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Abstract This paper presents our practical experience of

expert opinion deduced from concrete field applications,

concerning mainly safety and reliability modeling. First,

expertise is defined and the approach used for eliciting

expertise is shortly described. Quality and value of infor-

mation from experts are important challenges for decision

making from risk analysis. Expertise is very useful for

supplying data when not enough field observations are

available for estimating parameter uncertainties and

quantifying risk analysis models, which are inputs to a

decision-making process. Applications presented herein

concern mainly the role of expert judgment in reliability.

Keywords Expertise � Operation feedback � Reliability of

components � Help for decision making � Risk analysis �
Industrial applications

1 Introduction

Expertise is an important support for risk analysis and

decision making, in the field of risk management, safety,

and dependability. Expertise is mainly used for under-

standing the context and the physical phenomena, for

supporting or improving input data, their variability being

frequently one of the main sources of uncertainty, for

proposing actions to suppress, to reduce or to postpone risk,

and finally, to take optimal decisions.

From a general point of view, expert judgments are

useful for quantifying risk models, because it has been

impossible to make enough observations from operation

feedback or physical tests, to quantify the model with

objective experimental data. Expert judgment data are

therefore used to estimate model parameter uncertainties

and to construct a probability density function of these

parameters.

Choosing experts, eliciting them with adequate ques-

tioning, scoring experts, combining expert assessments,

joining them with field data are some of the main diffi-

culties of the analyst who has to cope with expert opinion.

The present paper describes our practical experience of

expert opinion deduced from real-field industrial examples.

In a first step (Sect. 2), expertise is defined and the

approach used for eliciting expertise is shortly described.

Quality and value of information elicited from experts

(Sect. 3) are important challenges for decision making

deduced from risk analysis and are analyzed in Sect. 4.

Then, some illustrative case studies concerning mainly

safety, reliability modeling and maintenance management,

risk analysis and proactive assessment are presented in

Sect. 5.

Note that it does not exist any magical method for

incorporating expert judgment in risk analysis. Every risk

analysis problem, in any case, needs a specific methodol-

ogy. Until now, there is no standard norm to elicit and to

model expertise, but only specific guides have been pro-

posed for particular areas.

First of all, before tackling the subject, it is necessary to

define the actors at stake:
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1. the experts: persons with specific knowledge, wide

experience, or training,

2. the analyst (or moderator) that uses expert opinions,

quantifies the models, interprets the results obtained,

and transfers them to the manager; note that often the

analyst is not an expert of the problem analyzed, he is a

support to express the expert’s knowledge in the most

appropriate way,

3. the manager (or decision maker) who will decide,

taking into account risk analysis results but also

economical and social stakes, knowing that very often

he has preferred shares depending on his concern.

2 What is expertise?

2.1 Definition

Expertise is a skill in a particular field, a know-how.

It is a knowledge source of prior subjective information

of a representative authorized and recognized person, based

on the knowledge, training, practice, and experience in a

particular area, at a given time.

It is a contribution to a technical problem facilitating a

decision taken by a manager. It permits to complete, to

improve existing data, when they are poor, incomplete, or

questionable; or to supplement them when they are lacking

(for instance in the case of bad field data or in case of an

innovation …). Very often, it is the only source of infor-

mation available, which can be used in a decision-making

process. It is demonstrated to be a valuable information.

It is a source of data that can be qualitative or quanti-

tative. It is essential when the future is not like the past:

new risk, new design, innovation, refurbishment, new

service conditions, new environmental conditions, modifi-

cation of preventive maintenance programs.

2.2 History

Use of expert opinion-based methodologies is relatively

recent. Since 40 years, expert opinion is mainly employed

in the form of subjective probabilities as a dominant source

of information for determining reliability parameters, like

failure rates, and associated uncertainties [in the IEEE

standards (1984), and in the famous reliability data hand-

books like, in the nuclear field, the Swedish T-Book (2000)

or the French EIReDA (Arsenis et al. 1999)]. It has been

successfully employed in probabilistic risk assessment

reports [like the Wash 1400 (1975) or the Canvey Island

report (Health and Safety Executive 1978)]. In the 1990s,

expert elicitation has been used to determine probability

distributions of physical input variables for two

probabilistic accident consequence codes (Goossens 2005).

More recently (in the 2000s), expertise-based methodolo-

gies have been largely used in the framework of life cycle

management and life extension studies, reliability studies,

human factor analysis, and prognosis studies (see for

instance Lannoy and Procaccia 2001, 2012; Bouzaı̈ene-

Marle 2005; Peres et al. 2007; US NRC 2011).

2.3 The elicitation process

The European guide Knowledge Engineering Expert

Judgement Acquisition and Modeling (KEEJAM), which is

a process in 15 steps based on knowledge management

engineering, can be recommended (Cojazzi et al. 1998).

Note that, this document is a guide and not a standard

(norm). It recommends the following steps.

• Choosing the experts This step is one of the major issues

of the analysis. It can be often considered that it is better

to use a number of experts enough to represent a variety

of opinions; ‘‘exotic’’ or ‘‘extreme’’ or ‘‘singular’’

opinions (sometimes they are innovative opinions) have

to be analyzed and taken into account if explained by the

concerned experts. According to (Cooke and Goossens

2000), criteria for selecting experts are as follows: 1

reputation in the field of interest, 2 experimental

experience in the field of interest, 3 number and quality

of publications, 4 familiarity with uncertainty concepts,

5 diversity in background, 7 awards, 8 interest in the

project, and 9 availability for the project.

• Then, different methods of interrogation can be distin-

guished: interactive group of experts or Delphi method

when the moderator wants to stimulate the creativity or

wants to obtain a global consensus; individual inter-

views, more suitable for obtaining more personal

opinions or for estimating uncertainties and quantified

estimates.

• Another major issue is elicitation, which is the process

to collect and collate the opinions of experts. Biases can

occur at many levels (Meyer and Booker 1993; Lannoy

and Procaccia 2001; Simola et al. 2005): cognitive

biases (overconfidence, anchoring, availability) and

motivational biases (social pressure, interpretation

error). These difficulties cannot be avoided. They have

to be reduced. Prior expertise experimentation is very

useful to reveal biases problems.

• Then, Bayesian methods, often subjective or normal-

ized probability distributions, can be used for combin-

ing expert opinions, mainly empirically.

Bayesian models for combining expert opinions are

proposed in the technical documentation, for instance

(Singpurwalla 2006; Procaccia 2009) for the more recent

references. Indeed, Bayes’ theorem is directly linked to
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expert judgment; prior information is generally given by

expert opinions and is joint to experience by the likelihood

function. An example proposed in the Sect. 5.3.2 presents

how expertise can be combined with operation feedback.

If X is the quantity of interest and x1, x2, …, xn are the

n estimates of X from n experts, then analyst starts with a

prior probability density over X, p(x) (it could be his own

opinion or the belief of the manager or a past experience),

this prior density is updated with the information x1, x2, …,

xn provided by the n experts.

Applying the Bayes’ theorem leads to

p x=x1; x2; . . .; xnð Þ � L x1; x2; . . .; xn=xð Þ � pðxÞ;

where L is the likelihood function.

If experts are independent, the likelihood function L is:

L ¼
Y

pðxi=xÞ; for i ¼ 1; n:

In this condition, note that operational feedback data are

more than precious and can also be combined as an expert

opinion. Being an experimental objective information in

the real service conditions, the general trend assigns to it

the most important weight.

Bayesian treatment permits mixing of expertise and

operation data. It is all the more since expert opinions are

heterogeneous and independent. Nevertheless, a sensitivity

analysis must always be performed for understanding the

robustness of the global information.

3 Uncertainty and risk analysis

3.1 Value of information

Expertise is obviously uncertain. And sensitivity analysis is

a way for quantifying uncertainty. Value of expertise

information, accuracy, relevance, and informativeness are

fundamental factors for the manager. Frequently, main

estimate input given by experts is the median value (50 %),

the mean value or an interval of dispersion generally

assigned to the 5 and 95 % quantiles for the query variable.

Performance of experts has to be assessed.

A first qualitative method to assess expert’s quality,

always available, is to assign scores to experts according to

their educative knowledge, their field experience, their

training, their skills… (Forrester and Mosleh 2005). Do we

have to renown experts? Relevance of the expert can be

estimated by studying his reasoning process and his argu-

ments, permitting to define and to calculate experts’ scores

(Lannoy and Procaccia 2001). Note that scoring expert is

very difficult and can be unreliable: it is rarely used in case

studies.

The first possibility, which is relatively classical, is that

weights used to combine expert distributions are chosen

according to the performance of experts on calibration

questions, questions for which answers are known to the

analyst (Cooke 1991). This is called the calibration

method. It has been asked for the experts’ uncertainties

over a number of calibration variables. The quality of

expertise can be measured by the difference between the

empirical distribution given by the calibration variables

from that deduced by the expert (Bedford and Cooke 2001;

Goossens and Cooke 2005).

Level of experts’ knowledge can be measured by Kull-

back entropy. Any information enrichment expresses as a

reduction in entropy. A way of measuring is to calculate

the Shannon entropy or relative information index of the

empirical distribution with respect to the witness variables.

It permits to define a relative index of more or less good or

bad experts (Lannoy and Procaccia 2001).

Another simple method consists in comparing expertise

data with observed operation feedback data. If these two

types of data are of the same order, it can be concluded that

confidence can be given to expertise. But if they are very

different, the difference has to be explained.

Nevertheless, expertise data may have been employed

for predicting future behavior of equipment consecutive,

for instance, to a design modification or to a new pre-

ventive maintenance program. In the framework of oper-

ation, if expertise is used for completing insufficient

operational data, it is likely that quality of the field data or

of the expertise has to be verified. In conclusion, field

observations are mainly interesting for an operational use,

experts’ judgment is mainly interesting when prediction or

prognosis is required, or when field data are rare.

3.2 Uncertainty and risk

Uncertainty is linked to risk. Definition of risk by the ISO

31000 standard (2009) (which is a risk management stan-

dard) is the effect of uncertainty on objectives, thus causing

the word risk to refer to positive possibilities as well as

negative ones.

Uncertainty analysis has been introduced by the Wash

1400 report (1975) mainly because most of the probabili-

ties were subjective, due to the extensive use of experts’

opinions. Consequently, decision makers would not accept

probability values without knowing estimates of the

uncertainty of input variables. Uncertainty can be repre-

sented by a probability function (in this case, Bayesian

methods are very well appropriate), or more simply by an

error factor. At the present time, variability of input vari-

ables (the random uncertainty) and lack of knowledge in

modeling (the epistemic uncertainty) are very often taken

into account in a risk analysis study. Ambiguity and
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indetermination are more rarely considered. Note also that

uncertainty analysis concerns also consequence modeling

and structural reliability studies.

3.3 Main steps of risk analysis

A risk analysis tries to answer the following questions

(Bedford and Cooke 2001):

1. What can happen?

2. How likely is it to happen?

3. Given that it occurs, what are the consequences?

Expertise can bring some answers to the decision maker:

1. An analysis of the context, underlining the different

sources of danger, which may impact people or

environment,

2. Uncertainty is quantified by probability; expertise can

reduce the level of uncertainty, if the expert has been

well calibrated (if he is an efficient expert and if he has

been trained to assess probabilities) and consequently

expertise can provide a better appraisal of probability,

3. Expertise can supply information about whether or not

a danger can lead to potential negative consequences.

The process of risk management consists of several

steps as follows:

• establishing the context,

• identification of sources of danger,

• risk assessment including deterministic and probabilis-

tic quantitative analysis,

• risk options (or risk mitigation actions) and treatment,

• creating a risk management plan, including implemen-

tation, control, and practical experience.

4 Decision phase

4.1 The utility function

The decision maker’s objective is often to maximize the

expected utility function of a project (design of installation,

equipment…), or of an intervention (system modification,

new maintenance policy …), or correlatively to minimize

the total cost, where

Utility ¼ R Benefitsð Þ�R Costsð Þ:

Benefits are all the possible outcomes (in particular the

gains in money) for a given decision. One cannot directly

measure benefits or satisfaction from a service or a good.

Generally, an estimation of expected gains or losses is

carried out when comparing different technologies and

their risks.

Total costs include

• investment–design–construction costs; they depend on

predicted failure probability; weaker will be this failure

probability, more important will be the investment cost,

• operation and maintenance costs during the service

period also depend on the failure probability,

• failure costs, safety–security costs, unavailability costs

depend strongly on the failure probability; these costs

must include the value of statistical life, which is very

difficult to estimate and generally badly known (An-

dersson and Treich 2010).

A simplified equation can be proposed, to calculate the

total cost to be minimized, CT:

CT ¼ Ci þ Pf � C;

where Ci is the investment amount, Pf the failure proba-

bility, and C the failure cost (including inspection–main-

tenance costs, unavailability cost, and safety cost).

Expected total cost is generally a U-shaped curve, the

minimum of which can be determined, so permitting to fix

a target value of the failure probability. It is the classical

maintenance optimization calculation when the operator

has to select corrective or preventive maintenance.

This method is interesting when potential losses are only

economical. In case of extreme events, when failure

implies human losses and environmental damage, this

method cannot be applied, because of the value, generally

indeterminate, of statistical life and safety costs.

But the method is used for new products when no prior

historical data are available. In this case, the failure prob-

ability is predicted or calculated from the observation time

to the ‘‘end of life’’ target. It has been observed, mainly

when using asset management models for optimizing life

extension of equipment, that failure probability is very

often the most influent parameter, before investment costs

or capital additions, which is likely due to a more important

uncertainty on failure probability than on costs.

4.2 Preferences

Risk analysis is frequently used to demonstrate the con-

formity of an industrial site to the requirements of regu-

lation rules. Nevertheless, quantitative risk analysis can be

considered as an important input of decision making. The

task of the decision maker is very difficult in the sense that

his decision can lead to negative consequences. Generally,

he has to choose one action (or option) among many, every

one leading to uncertain consequences, more or less

serious.

First of all, he will listen to the analyst, looking at the

results and their uncertainties, their robustness, the sensi-

tivity analysis, the models used, the uncertainties
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concerning input data including quality and reliability of

expertise, social, economic, and environmental stakes.

Since most actions may have uncertain negative conse-

quences, considering the industry stakes, the decision maker

must specify his preferences that can concern for instance:

• in the reliability centered maintenance (RCM) frame: safety,

availability, maintenance costs (Beaudouin et al. 1999),

• or in the frame of design phase: availability, invest-

ment, and delay…

These parameters are called attributes, and the decision

maker has to give a hierarchy of these attributes deter-

mining his degree of preferences (Beaudouin and Munier

2009). It is important that these attributes can be measured,

even subjectively, or in using indicators that are repre-

sentative and measurable. A utility function can be elicited

taking into account the risk attitude of the decision maker.

4.3 Decision analysis methods

Main popular decision analysis methods are listed in the

Table 1.

5 Applications in safety and reliability

5.1 Example 1: Probabilistic safety analysis (PSA)

and reliability data handbooks

Most of the dependability methods need expertise. It is the

cases of fault trees and event trees used in safety analysis. Many

input data are necessary concerning initiating events, critical

failures, human reliability probabilities, service profile.

Two hundred experts (IEEE) have been mobilized in the

construction of the PSA Wash 1400 data and gave sub-

jective probabilities using expert opinions.

Main comments concerning this safety analysis were

related to the lack of field data and to the evaluation of

uncertainties.

Likewise, expertise (from design engineers, operators,

maintenance engineers, safety analysts) has been largely

used for the T-Book (2000) and for the EIReDA ‘2000-

European Industries Reliability DAta (Arsenis et al. 1999):

• selecting the most important safety components,

• grouping them into families of equipment,

• proposing a confidence interval for failure rate,

Table 1 Main decision analysis methods used in risk management, safety, and dependability

Methods Use of the method Use of expertise Some characteristics

Cost–benefit analysis Risk analysis Probabilities, seriousness of

potential accidents

Costs of safety

Basis for a consensus

decision

Decision tree Reliability and corrective/preventive

maintenance

Design phase

Assessment of reliability

parameters

Finite number of actions

Economical utility

Making decision using Bayesian

inference

Reliability, PSA, maintenance, durability

Treatment of modifications

Updating of data

Effects of modifications

After definition of a

mitigation action (or

option)

Influence diagrams Organizational and management factors

Maintenance

Human factor probabilities

Influent factors

Qualitative influence

Conditional probabilities

Conditional independence

Multiattribute utility theory (MAUT)

(Beaudoin and Munier 2009)

Risk analysis when rare events (small

probabilities, major consequences)

Safety, maintenance optimization, help

for new design

Elicitation of preferences, of

a utility function

Decision under uncertainty

Action studied a priori

defined

Attributes measurable

Life cycle management (LCM) Risk informed asset management

Optimization of maintenance

Life extension

Screening

Definition of actions

(options)

Assessment of reliability

parameters

Optimization of the net

present value (NPV)

Asset management models

Belief networks Risk analysis

Diagnosis, prognosis, optimization of

maintenance

Proactive behavior

Construction of the belief net

Probabilities of the nodes,

conditional probabilities

Verification—validation of

the model

Qualitative and quantitative

variables

Takes into account

uncertainties

Permits to think of new

actions
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• calculating a failure rate when zero failure has been

observed after many years of operation.

5.2 Example 2: Effectiveness of maintenance action

for repairable components

Figure 1 shows the impact of a preventive maintenance

action on the age of equipment. Determination of the level

of random rejuvenation impacted by each maintenance

intervention, wi, is the main problem.

When the maintenance impact is minimal, the equip-

ment after maintenance is in the same state that it was

before this maintenance. This state is named as bad as old

(ABAO). The virtual age is identical to the operational

time (here also calendar time). This situation generally

corresponds to the occurrence of a failure of a component

during operation of an industrial installation. The correc-

tive repair is carried out rapidly allowing a quick restart of

the installation. The corresponding maintenance rejuvena-

tion factor, w = 0, is null.

When the maintenance is perfect, the component is

equivalent to a new one component after the maintenance

intervention. This state is named as good as new (AGAN).

This situation generally corresponds to a preventive

maintenance with replacement of the component by a new

one: its virtual age is null after each maintenance task and

the rejuvenation factor equals 100 %.

Finally, a real maintenance, unfortunately often named

‘‘imperfect maintenance’’ (words ‘‘effective maintenance’’

or generalized renewal process GRP are preferred by the

authors), is intermediate between the two previous cases.

The rejuvenation factor is comprised between 0 and 100 %.

Figure 2 shows an example of deterministic influence

diagram allowing to quantify the maintenance effective-

ness wi. This influence diagram has been built by an expert

and a reliability analyst. Expert judgment has been used to

determine the a priori probabilities and the conditional

probabilities of each state of a node given the state of the

parent nodes. An expert specialized in the maintenance of

valves has been selected and motivated to provide rigorous

answers. The reliability analyst has shown the expert how

to assess probabilities and confidence intervals.

Figure 3 shows an example for the determination of the

maintenance rejuvenation factor from expertise made by

manufacturer and maintenance teams, using a specific

Bayesian software (Rexpert), after recording estimates

from several teams of experts and modeling their answers.

5.3 Example 3: Maintenance optimization of a diesel

generator engine

Two diesel generators assume the auxiliary electric power

of nuclear plants safeguard systems in case of loss of the

redundant 250 and 400 kV grids supplying the plant. Their

role is important for the plant safety, and operators have to

avoid any failure during the diesel operation in case of

accident. To respect this objective, the initial basic pre-

ventive maintenance recommended a systematic replace-

ment of all cylinder linings every 5 years.

5.3.1 Probability of failure of a new cylinder lining

After a yearly block lining endoscopic examination con-

cluding to a good state diagnosis, or after its preventive

replacement, the statistical analysis of recorded field data

makes it possible to determine the future risk of failure of

the diesel engine during the next operating year. Indeed,

the field data collected during 20 years allow to determine

the aging law of a new diesel cylinder lining, which is

modeled with a Weibull distribution, if only the first failure

data are taken into account (Fig. 4):

FðnÞ ¼ 1� e�
n
gð Þ

b

F(n) is the failure probability after n start-up, b and g are,

respectively, the shape and the scale parameters of this

distribution.

These parameters calculated here by the maximum

likelihood method are, respectively:

b ¼ 1:42;

g ¼ 303 start-up:

As seen previously, each year, the cylinder lining state is

inspected by endoscopic control. If the cylinder’s state is

T1

maintenance
N °1

N
T2

°2

N° 3

Virtual age

Operation Time

rejuvenation

AGAN

ABAO

a2

a1

GRP

Fig. 1 Effect of maintenance (here positive) on the behavior of a

repairable equipment. ABAO as bad as old, AGAN as good as new,

GRP generalized renewal process or imperfect maintenance
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still good, its failure probability during the next operation

cycle can be estimated from this Weibull distribution.

5.3.2 Failure probability of a degraded cylinder lining

But what happens if the in-service inspection reveals a

small lining degradation, which does not justify its

replacement? Expert opinions are therefore needed to

estimate three probabilities in this condition:

• the probability that one or more cylinder linings could

operate during a specified time in a specific degraded

condition, either during a diesel test—about 24 one-h

tests/year), or either during one diesel mission time in

case of plant accident (diesel failure rate);

• the on-demand failure probability of a degraded lining,

when it is needed for its mission;

• the probability that a failure under one of these

conditions would lead to a shutdown of the plant in

application of operating procedures : a failure lasting

longer than 72 h imposes indeed a plant shutdown, the

field operation data feedback recorded during 20 years

being inadequate (no shutdown was observed in this

specific situation).

Only the first probability is considered hereunder. The

same approach can be used to evaluate the two other

probabilities.

Note that experts during an endoscopic inspection can

distinguish six types of lining degradations (Table 2).

Effectiveness of a 
maintenance action

Environment Staff

Heat Radioactivity

Equipment

Complexity

Accessibility

Standardization

Duration

Qualification

Fatigue

Stress

Fig. 2 Influence diagram and probability histogram for the evaluation of the effectiveness of a maintenance action (case of a pneumatic valve)

(Clarotti et al. 1994). Bottom of the figure: histogram of probability answers for one specific maintenance task
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5.3.2.1 Expert’s elicitation The questions asked to the

maintenance experts concern the preventive replacement of

diesel cylinder linings before any occurrence of degrada-

tion and the optimal periodicity of this replacement. Nine

experts are questioned for determining the on-demand

probability of cylinder failure (start-up of the generator),

the failure rate during all the mission operation when cyl-

inders are degraded, and the probability to get an

unavailability[72 h after a failure, this time corresponding

to the necessary time allowing the connection of one

another generator existing in the plant.

The results of this expert elicitation questionings are

given in Table 2.

Answers are binary. Expertise data are so considered

equivalent to binomial test results in the probabilistic

analysis and are first jointed to a non-informative function

(an uniform distribution), to obtain a prior probability

density f(p/expertise) strongly weighted by the expertise.

This last one is again combined, in a second time, with field

data [called likelihood function, L(a, b/p)] to obtain the

posterior density, f(p/a, b).

5.3.2.2 Modeling expertise The general methodology to

combine field data and expertise is summarized on Fig. 5

and in the example hereunder. Obviously, Bayesian tech-

nique allowing to associate prior expertise to feedback

experience is employed.

Example During an endoscopic control, a long crack

type is observed on a cylinder lining: 8 experts out of 9

consider that the diesel engine can safely operate 24 h with

this type of crack (Table 2, line ‘‘long crack’’ at 24 h).

 Density Function
    Prior,  Likelihood, and Posterior distributions

0,00E+00

1,00E+00

2,00E+00

3,00E+00

4,00E+00

5,00E+00

6,00E+00
4,

6E
-0

3

9,
7E

-0
2

1,
9E

-0
1

2,
8E

-0
1

3,
7E

-0
1

4,
7E

-0
1

5,
6E

-0
1

6,
5E

-0
1

7,
4E

-0
1

8,
4E

-0
1

Repair Time 

Prior
Likelihood 
Posterior

Maintenance

team estimate

Designer

estimate

Expert ‘s estimation

wi , (ρ)

Fig. 3 Modeling prior preventive maintenance effectiveness esti-

mates. Left preventive maintenance rejuvenation density deduced

from expert’s maintenance team (prior), right manufacturer team

rejuvenation (likelihood function), center posterior density (joint

expert’s densities calculation and graph plotted by Rexpert software

(Procaccia and Procaccia 2012), repair time in hours)

% of cumulated failures

Number of start-up.

Fig. 4 Aging distribution of new engine cylinder linings

Table 2 Maintenance optimization of a diesel generator—expertise

elicitation

Questions Answers

Type of crack ri Can safely

operate during tj
hours?

Number of

answers:

yes

Number of

answers:

no

Small crack 24 9 0

48 9 0

72 9 0

200 9 0

Short crack 24 9 0

48 9 0

72 9 0

200 5 4

Long crack 24 8 1

48 8 1

72 8 1

200 4 5

Short deep cracka 24 7 1

48 7 1

72 5 3

200 4 4

Long deep cracka 24 6 2

48 6 2

72 4 4

200 2 6

Crack with oil leak

or carter

overpressurea

24 1 7

48 1 7

72 1 7

200 0 8

a One expert (out of 9) did not answer
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Following statistical distributions can be successively

determined for the 24-h case:

• the prior density of expertise is a beta/binomial density:

90 p 8þ1ð Þ�1ð1� pÞ 1þ1ð Þ�1 ¼ 90 � p8 � 1� pð Þ;

• the field experience records five successes after five

diesel tests: these test results can be modeled by a

binomial law, and the corresponding likelihood func-

tion L (5/p) can be written as:

Lð5=pÞ ¼ p5ð1� pÞ0;

• finally, the Bayesian joint conjugate posterior density

is:

210 � p 14þ1ð Þ�1 � 1� pð Þ 1þ1ð Þ�1¼ 210 � p13 � 1� pð Þ;

• and the posterior expected success of the diesel

operation during 24 h, with this type of crack (long

crack), is the posterior expected mean:

p rið Þ ¼ 0:875:

5.3.3 Decision theory

A decision problem begins by listing all possible alterna-

tive actions (or options), considering only those that are the

more relevant for the examined problem. This part of the

analysis corresponding to the decision-making problem is

very often regarded as the more valuable step of the

decision analytic process. This process can be represented

by a decision tree (Fig. 6).

The risk assessment associated with any envisaged

option takes into account the consideration of all possible

uncertain events related to the decision alternative actions

(step called states of the world) and to their corresponding

outcome consequences or utility function.

A ‘‘good’’ decision is the alternative action that at best

takes into account the available information at the decision

time and the preferences of the decision maker over all the

possible consequences, weighted by their probability of

occurrence.

These consequences are a means of appraising the

decision-maker objectives, very frequently safety objec-

tives, production availability, or expected economical

benefits, but also other more or less tangible factors.

The theory of rational decision making says that the

optimal decision rule is to select the action maximizing (or

minimizing) the expected utility function (the loss func-

tion). It is the maximization of expected utility principle

(MEU).

The theory can be simply divided into three steps: the

alternative set of possible actions, the states of nature and

the corresponding external uncertainties, and the set of

induced consequences.

5.3.4 Diesel engine application

Two decision trees have been developed for the diesel

application, the objective being to optimize the preventive

maintenance of cylinder linings, and mainly the conditional

maintenance given the endoscopic observations:

• when, during an endoscopic control, one or more

scratched linings are found, the question is: do we have

to replace or not the degraded linings, given the number

of tests remaining to be performed before the next

endoscopic control, and given the probability of being

needed for a mission during the remaining service

period of the linings?

• the second decision tree concerns the optimal frequency

of lining replacement, given their age; the field of

possible actions is large; the study has been restricted to

the evaluation of risks associated with discrete replace-

ment periods of 5 years (the reference solution), 7, 10,

and 15 years, and estimating the corresponding loss

functions, calculated in cost terms (of repair, down

time, and replacement).

The optimal decision is the one that leads, here, to the

lowest expected loss function. This function represents the

probabilized economic consequences arising from a given

action.

To illustrate the first decision tree, let us take the

example of a lining degraded with a long crack. The

computed failure risks and the associated loss functions for

one more operating year of the diesel are, respectively:

Fig. 5 Modeling of expertise for an observed type of crack ri

permitting safe operation during tj hours, p being the survival

probability
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Probability of failure during mission/new cylinder = 8.71�10-6

Probability of failure during mission/degraded

cylinder = 3.49�10-4

Probability of failure during test/new cylinder = 2.32�10-3

Probability of failure during test/degraded cylinder = 7.44�10-2

Loss relative function: lining replacement = 1.00

Loss function: no replacement = 0.28

The «best» decision is: «do not replace the degraded lining until

the next scheduled endoscopic in-service inspection»

The costs taken into account are the followings:

• the reference elementary cost is the one lining

replacement cost: C1 = C;

• the systematic preventive replacement cost of the 20

cylinders is: C2 = 20 C;

• the failure cost during a test is: C3 = 3 C;

• the failure cost during a mission is: C4 = 140 C;

• the mean cost of 24-h down time is: C5 = 40 C.

The decision tree as a whole is complex, because it must

take into account all lining degradation and failure proba-

bilities in each operating cycle, the results of the endo-

scopic examinations, and the actions proposed by experts

on the basis of these results, between two systematic pre-

ventive lining replacements.

The corresponding decision tree is given on Fig. 7.

The relative loss function for linings preventive

replacement periodicity every 5, 7, 10, and 15 years is

plotted on Fig. 8.

The minimum of the loss expectation lies in the vicinity

of 10 years and is relatively flat until 15 years. The deci-

sion to extend the periodicity of systematic linings

replacement from 5 to 15 years has been finally taken by

the utility, and the goodness of this decision has been,

since, proved and the decision has been generalized.

5.4 Example 4: Weibull analysis with high rate

of right-censored data

In case of high rate of censored data, the algorithm Bayesian

restoration maximization (BRM) is preferably used (Bacha

et al. 1998). The problem is to construct a prior distribution

for the shape parameter (gamma law) and the scale param-

eter (beta law) of a two-parameter Weibull distribution. Four

questions are asked to experts (generally designers or

operators or maintenance engineers). Information obtained

permits the assessment of these two parameters.

• Q1—Is it an aging equipment?

• Q2—Do you observe an important increase of main-

tenance actions?

• Q3—Are your previous answers based on technical

facts (operation feedback, preventive maintenance

programs …)?

State of the world

Alternative A1

Consequences

Probability P1

Probability Pnk

Consequence C1

Consequence Cni

Decision nodes

Chances nodes

Alternative An

Fig. 6 Decision tree
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• Q4—Considering service—environment and mainte-

nance conditions—could you give an interval for the

lifetime of equipment, from commercial operation time

to the end of life?

As in the previous example, expertise is then jointed to

field data and has given good results in evaluating aging of

non-repairable equipment (an example is given in Table 5—

Sect. 5.6). Sensitivity analysis is recommended.

5.5 Example 5: Durability and maintenance costs

The purpose is to distinguish the trends of maintenance

costs of an aging plant, in a proactive perspective. Belief

network technique has been used. Here, it is an excerpt of a

larger net containing more than 200 relevant variables.

These last ones (Table 3), described in precise terms, have

been selected by experts, permitting the construction of the

net (Fig. 9), which is a directed acyclic graph. Most of the

experts participated in the study (Chatelain and Lannoy

2001). The net has been verified and validated, and then

quantified using expert judgment or field data. Then, it will

be possible to think of new actions for the manager by

looking at the critical influencing factors and determining

ways limiting or breaking the influences. Maintenance

costs (variable T10) will experience a sharp increase evo-

lution if the absence of suppliers for spare parts (G1) or

more stringent safety rules (R1).

5.6 Example 6: Reliability growth, design modification

of an equipment

Five failures and 9 right-censored data have been observed

during 2,068 h on identical components. Considering these

bad results, design modifications have been decided. After

modification, new field data have been recorded during

1,183 operation hours: two degradations and six right-

censored data have been then observed.

Two groups of experts (design engineers, operation and

maintenance engineers) have been elicited about the design

modification effectiveness. Expertise results are summa-

rized in Table 4. Reliability calculations before and after

the modification are given in the Table 5, using different

reliability methods. The conclusion is that complementary

field data are necessary for concluding a reliability growth

(Clarotti et al. 2004).

Fig. 7 Diesel engine decision tree

Fig. 8 Loss function versus periodicity of lining replacement
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Several statistic models have been used to evaluate the

impact of the modification on the equipment aging. Results

are compared in Table 5.

5.7 Example 7: Analysis of petrochemical compressors

piston-liner and ring cracking degradation

during test. New maintenance age reduction

models [arithmetic reduction in age (ARA)]

for repairable equipment

Statistic distributions like the Weibull distribution can only

be used to model reliability for identic and independent

equipment having same failure law, and for only modeling

one failure mode. In fact, after any maintenance, one specific

equipment becomes different of the other similar equipment,

which are not yet maintained: the maintenance intervention

has rejuvenated it, and statistic distributions cannot represent

the failure distribution of a whole set of nonidentical and

interchangeable equipment. A counting failure process, the

non-homogeneous poisson process (NHPP), is then used to

model the behavior of repairable equipment. Generally, the

power law process (PLP) supports the Poisson process. The

most popular process to represent the maintenance impact on

the reliability of equipment and systems is the ARA model

that has already been presented in Fig. 1 (Sect. 5.2). Other

models are available as the arithmetic reduction in failure

intensity (ARI) and the log-linear process support (Procaccia

et al. 2011).

The ARA model has been used in this example. It needs

to determine at least 3 or 4 parameters: the 2 parameters for

the support process law: b and g, and one or two param-

eter(s) characterizing the maintenance age reduction.

Table 3 List of relevant variables

Abbreviation Class of variables Variables Modality

T1 Technical variables Maintenance policy

Replaceability of components

Aging of components difficult to replace

Aging of other components

Overall conditions of components

Maintenance information system

Existence of spare parts

Appearance of new design faults

Available technical margins

Increase of maintenance costs

(output variable)

Optimized/not optimized

Easy/difficult

Acceptable/problematic

Acceptable/problematic

Acceptable/problematic

Good/to be improved

Yes/no

Yes/no

Yes/no

No increase/sharp increase

T2

T3

T4

T5

T6

T7

T8

T9

T10

R1 Regulatory variables Safety rules Statu quo/more stringent

R2 Dosimetry regulations Statu quo/more stringent

R3 Standards Statu quo/more stringent

E1 Miscellaneous variables Control of the industrial context Yes/no

H1 Production loss following an incident Minor/great

G1 Presence of suppliers Yes/no

G2 Staff motivation Weak/strong

S1 Continuity in skills Well managed/poorly handled

R1

T3

T5

T7

T10

T6

T9

S1

T2

T4

G1

T8

G2
R2

T1

E1

R3

H1

Fig. 9 The belief net for the trends of maintenance costs

Table 4 Reliability growth, results of elicitation

Groups Deterioration rate

with age

Median lifetime of the

modified equipment

Designers Continuous, weak 5,000 ± 1,500

Maintenance

engineers

Mean 4,000 ± 1,500
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The age reduction factor estimation needs to collect a

large sample of data in a statistic (or frequentist) evalua-

tion. It is not the case in this example, and Bayesian

approach is preferable.

This latter approach is used here, complementary to the

frequentist approach. Concretely, maintenance experts are

asked about either the mean estimate of the maintenance

rejuvenation effectiveness, q, or either on the comple-

mentary equipment restoration factor, q. Their estimates

are related to an average of all maintenance impacts on the

maintained equipment, in a three-parameter model, or,

better, in a four-parameter model if experts can appraise an

averaged impact factor for corrective CM, and for pre-

ventive maintenance PM.

Due to the complexity of the latter ARA model, the rare

existing market software generally determines three

parameters for repairable equipment model.

Even in this case, the algorithm is rather complex and it

requires a tool for the iterative maximization of the log-

likelihood function for failures and maintenance opera-

tions. When 4 or more parameters have to be evaluated, in

case for instance of many different types of preventive

maintenance (current or overhaul), only Bayesian tech-

nique with elicitation of expert’s judgements on the dif-

ferent maintenance effectiveness can solve the problem.

5.7.1 Field recorded data and process models

for repairable equipment

The experts’ application presented here concerns four

reciprocating compressors (Fig. 10) monitored during a

test of 8,760 h (censored test), performed to determine the

structural reliability of the cylinder block set: piston liners

and rings (piston segments) (Moss 2005).

Two types of failures occurred during the tests:

• (1) compressor performance losses (due to ring crack-

ing or liner degradation and leakage),

• (2) compressor lubrication failures (seal cracking).

The observed data during the compressor tests are given

in the Table 6.

The type of maintenance performed is either a corrective

maintenance (CM) after a complete failure, either a pre-

ventive maintenance (PM, here a condition-based mainte-

nance) in case of degradation observed during a mid-test

in-service inspection. All failures are taken into account

here (type 1 and type 2) to increase the data sample, which

is very small.

Several age reduction maintenance models have been

compared in this case study.

The first step of expertise consists in evaluating the

‘‘best’’ maintenance model fitting to the test field data (see

Fig. 1):

• ABAO model, the maintenance carried out to restore

the function has no impact on the compressor age: the

state of the compressor is the same after repair than the

state it had just before failure,

• AGAN, the maintenance totally renews the compressor,

• imperfect maintenance or GRP, modeled with either

ARA1 model, in which the maintenance restoration

implies a reduction in age between two maintenance

interventions, or either ARA? model, where

Table 5 Reliability growth, results

Methods used Old equipment Modified equipment Observations

Shape

parameter

Scale

parameter

Shape

parameter

Scale

parameter

Johnson method 1.3 1,400 1.4 1,400 No improvement

Wayne–Nelson method 1.2 1,450 1.0 1,750 Improvement

Maximum of likelihooda 1.7 1,450 1.6 1,700 Likely improvement

Stochastic expectation maximization (SEM)a 1.8 ± 0.1 1,450 ± 50 2.4 ± 0.1 1,350 ± 150 No improvement

BRMa

4,000–6,000 h 1.4 3,850 1.6 4,360 Strong improvement

1,000–6,000 h 2.0 2,050 2.0 2,360

1,000–4,000 h 2.1 1,800 2.2 1,900

Method IBW

4,000–5,000 h Not calculated 1.1 2,060 Strong improvement

4,500–5,000 h Not calculated 1.3 4,700

BRM Bayesian restoration maximization (Sect. 5.4), IBW Bayesian inference for a Weibull law
a Bacha et al. (1998)
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maintenance restoration implies age reduction in the

cumulated compressor age at the time of maintenance.

The parameters of these different models have been

estimated with Rexpert software, either from a classic

statistic data analysis, or either based on a Bayesian

approach, using experts’ judgments.

5.7.2 ARA maintenance models comparison

The failure data analysis compares, on Table 7, several

ARA model results:

• minimal repair (ABAO) and perfect maintenance

(AGAN), two-parameter models, only characterized by

the parameters of the power law supporting the counting

process, b and g, and GRP ‘‘imperfect maintenance’’

process, with the two alternative age reduction models:

ARA1 and ARA?, which, at least, contain three param-

eters b, g, and the mean maintenance restoration factor q,

• then, the generalized Bayesian renewal maintenance

model, characterized by several maintenance restora-

tion factors, at least qPM and qCM, with possibly several

distinct restoration factors for each preventive or

corrective maintenance.

All models confirm a more or less rapid intrinsic aging

leading to cracking or leakage of compressor cylinder

block set. Except the minimal repair model, each other

model has a shape parameter b C 2.5, meaning very likely

friction rubbing or stress corrosion initiation (but not yet

fatigue aging—generally characterized by a b factor

around 2, the number of compressor start-up being small).

The mid-test PM impact has been supposed insignificant

during the time of the test for all models.

5.7.3 The Bayesian model for repairable equipment

Table 7 also shows the Bayesian refined parameters obtained

again with the software Rexpert in the case of the GRP with

4-parameter model, distinguishing here the two types of

failure modes: loss of performance (1) and lubrication (2).

Here, the maintenance restoration factors have been

estimated by elicitation of two groups of experts—

designers and maintenance team—in the same way as it has

been seen previously in the example of Fig. 3:

• for lining cracks or ring repairs, the mean expert’s

restoration factor estimate is q = 80 %: the degraded

item is generally replaced by a new one part, but

experts consider that the restoration is never totally

AGAN because the new replaced part of the compres-

sor is installed in an aged environment;

• in case of lubrication failure, the mean restoration factor

assessed by experts is only 25 %, because the repair

generally consists on the replacement of a seal, which is

only a small part of the entire lubrication system.

5.7.4 Overview of the results

Figure 11 shows the results associated with each com-

pressor (in spite of the lack of data), and the global esti-

mates for all the compressors set, in cases of three-

parameter models ARA1, ARA?.

Figure 12 gives the comparison of the individual com-

pressor reliability, and the global reliability of the com-

pressors set.

And finally, Fig. 13 shows the results obtained with the

GRP Bayesian model.

These three ARA frequentist and Bayesian models are

considered as the best maintenance models for the com-

pressors by experts.

5.7.5 Choice of the ‘‘best’’ model

The choice of the «best» model is based on the information

entropy giving a relative measure of the information lost

between the model and the reality. The most popular and

currently used criterion is the log-likelihood value (LKV),

which is an increasing function versus the number of col-

lected data and the number of model parameters k to be

estimated. The best model has the highest LKV.

Fig. 10 Reciprocating compressor

Table 6 Observed field data table (hours) [failure modes: (1) per-

formance losses, (2) lubrication failures]

Compressor Failure no. 1 Failure no. 2 Failure no. 3 Censor

A 3,600 (1) 7,408 (1) 8,058 (1) 8,760

B 4,200 (1) 8,760

C 2,408 (1) 5,426 (2) 7,076 (1) 8,760

D 3,003 (2) 8,408 (1) 8,760
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Here, the highest LKV between ARA models is associ-

ated with the ARA1 model, but LKV for ARA? and

Bayesian ARA are very close. The LKV of the Bayesian

model is lower than the LKV of the frequentist ARA models.

But, in fact, this model is penalized by the share of data

between two failure modes aggravating the context of the

limited data. Nevertheless, the shape (2.61) and the scale

(4,750 h) parameters of this Bayesian model lead to a better

calculated reliability for the compressor compared to the

reliability deduced from ARA frequentist models (Fig. 13).

Meanwhile, the Bayesian four-parameter ARA model,

characterized by different age impacts of the two failure

modes (performance and lubrication), and with corre-

sponding different restoration factors is preferred by

experts. The mean log-likelihood function of this model

indicates a close relationship with the simple AGAN

Table 7 Comparison of estimated parameters between ARA models

Model b k/g q1 (%) restoration factor

1 mean CM and PM

q2 (%) restoration

factor 2

LKV

Minimal repaira ABAO 1.81 ± 0.66 1.64E-7

5,496 h

0 0 -82.1

Perfect maintenance AGANa 2.46 ± 0.62 1.60E-9

3,770 ± 1,450 h

100 100 -79.5

GRP ARA1
a 3 parameters 2.96 ± 0.43 2.6 E-11

3,760 ± 1,230 h

88 – -79.2

GRP ARA?
a 3 parameters 2.75 ± 0.17 8.1E-9

4,680 ± 1,420 h

70 – -79.6

Bayesian GRP 4 parameters

2 failure modes, 1, 2

2.61 ± 0.27 2.5E-10

4,750 ± 1,730 h

80 type 1 performance 25 type 2 lubrication -79.5

LKV log-likelihood value
a All data: modes (1) ? (2)

Fig. 11 Calculated individual parameters for ARA1 and ARA? models [calculated by Rexpert software (Procaccia and Procaccia 2012)]
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model, meaning practically a renewal of the cylinder block

after a repair.

This observation is accepted by experts because most of

the repairs concern type 1 failures that are repaired by

replacement of the failed item by a new one.

5.7.6 Optimizing the ‘‘best’’ in-service inspection

or maintenance time

On the other hand, Fig. 14 clearly shows two different failure

trends, before and after 3,000 h of test, with a strong

increasing in the kinetic of failures after 3,000 h. This

observation means that the technical optimal time to perform

a preventive maintenance would be just before 3,000 oper-

ating hours.

The best goodness of fit between model and data obvi-

ously occurs when the failure data of type 1 and type 2 are

mixed, because the sample data size is increased; the cor-

responding LKV is consequently higher.

Nevertheless, when the two failure modes are distin-

guished, it is possible to determine the parameters corre-

sponding to each failure mode, using the Bayesian model

(Table 8 for ARA models). Again, this table shows a large

difference between the two failure modes, confirming the

graph of Fig. 14.

Fig. 12 Comparison of

compressor reliabilities

Fig. 13 Estimates obtained

with the Bayesian model

Fig. 14 Nelson–Aalen plot of cumulative failures type 1 and type 2

(x-axis: time intervals between failures; y-axis: estimator of the

cumulated hazard rate; plotted by Relcode software)
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5.7.7 Economical maintenance optimization

As said before, only a visual control at mid-test interval has

been performed during the test period.

A mid-test (around time 4,000 h) consisting in a sys-

tematic total replacement of the piston cylinder block set

has been simulated. The set is then considered as a new

cylinder block set. Costs of preventive and corrective

maintenance are fictive but are relatively correctly weigh-

ted, with a 70 k€ preventive maintenance cost, compared

with a 180 k€ corrective maintenance including the loss of

production cost.

Figure 15 shows the results obtained with two mainte-

nance scenarios: scenario 1 corresponds to a ‘‘no mainte-

nance’’ scenario, scenario 2 includes a preventive

maintenance at mid-test.

Note that a systematic preventive maintenance reduces

the number of compressor failures by a multiplicative

factor 2 (dark zone of the graph), but the preventive

maintenance cost is largely higher, and the total

maintenance cost is multiplied by a factor[2. Considering

these conditions, the ‘‘best’’ economical maintenance sce-

nario seems to be scenario 1: wait for failure. The con-

clusion would be certainly inversed if the safety of the

plant is concerned.

6 Conclusions

Although it is an uncertain information, expert opinion is

very useful and valuable for many reasons:

• understanding the context and physical phenomena at

stake,

• supplying data when not enough observations to

quantify with field data are available,

• quantifying risk analysis models,

• refining, enriching, and updating estimates from field

data,

• estimating model parameter uncertainties.

Safety and reliability require quantitative risk analysis

studies. These last ones are performed first to show that

an industrial site and its equipment conform to the reg-

ulation requirements. But quantitative risk analysis is

mainly an input to a decision-making process. The

decision maker will not only use risk analysis results but

he also will examine input data and their uncertainties,

influence of expert opinions on final results and will use

sensitivity analysis and cost–benefit analysis before tak-

ing any decision. Expertise generally is an advantage for

the acceptability of a project but it could be also an

handicap.

Table 8 ARA1 and ARA? parameters for type 1 and type 2 failure

modes

Failure mode Type 1: performance loss Type 2: lubrication

Model ARA1 ARA? ARA1 ARA?

b 2.58 2.06 0.72 3.97

g 5,810 h 8,410 h 2,770 h 2,760 h

k 2.84 E-10 8.22 E-9 1.06 E-14 2.19 E-14

q 77 % 68 % 0.99 0.99

LKV -54.96 -56.01 -17.44 -17.48

Fig. 15 Compressor

maintenance optimization
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Many help for decision-making methods are presently

available. Maybe the most popular ones are the decision

tree for its simplicity, the MAUT method because it takes

into account of the manager’s risk attitude, the LCM

method, which answers correctly the stakes of safety and

life extension, and the belief network, which takes into

account uncertainties and which fits very well to a large

number of risk management problems. Contribution of

expertise is essential for all these methods.

The most important is to make sure that the whole

decision process including expertise is completely docu-

mented and consequently transparent. The more it is, easier

the decision will be accepted. Specially, when safety is

concerned, transparency of input data and managing pro-

cess is an obligation.

Main problems met when using expertise are certainly

the value of information: is it worth? Is it robust? At which

confidence level does it correspond? Another problem

linked to this first one is the labeling of experts: do we have

to score experts? Nevertheless, all information (coming

from field data or from expertise or from physical testing)

is precious and has to be included and considered.
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sûreté de fonctionnement. Lavoisier, Editions Tec & Doc, Rue

Lavoisier, Paris

Lannoy A, Procaccia H (2012), Le jugement d’expert dans la maı̂trise
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