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1 Introduction 

The RAMS analyses are thought to be an engineering based tool whose use en-

tails no theoretical lucubration. To the contrary, many theoretical aspects must be 

taken into account for RAMS studies to do indeed the job they are supposed to do 

that is, for RAMS studies to state in a sound way whether or not a given system is 

“safe/reliable enough”. 

As a matter of fact practical RAMS exercises cope with systems whose compo-

nents are costly and fail rarely notwithstanding possible aging, which is kept under 

control by maintenance.  For such a type of components proper life tests are infea-

sible due to cost and duration. The reliability of these components must then be 

assessed by the data collected at the plants where the components are operating. 

These data are referred to as “field data” and are gathered under non-

homogeneous stopping rules. Indeed, the different plants, which are supplying 

field data, may have been started up at different times in the past. The data coming 

from any individual plant are equivalent to data observed under a type I life test, 

the truncation time being the time since the plant was started up. The life test cor-

responding to the ensemble of plants under observation, is a combination   of type 

I tests of different durations. This fact, as it will be shown in section 2, makes 

classical statistics unsuitable for inference from field data. 

Since field data are to be processed by Bayes statistics, the role of prior 

knowledge is put into the open. Prior knowledge plays a central role both in 

Bayesian and in classical statistics (see section 3). In classical statistics, prior 

knowledge is a hidden though fundamental ingredient. The Bayesians, who offi-

cially recognize the role of prior knowledge, have the advantage and the duty to 

handle prior information in a rational way. This is not an easy task in the case of 

aging components as there is no family of conjugate priors for the parameters of 

aging distributions. Two complications arise due to the lack of any conjugate fam-

ily, namely: 
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1. numerical methods must be used for computing the integrals which appear in 

the Bayes formulas; 

2. it becomes more difficult to balance the impacts that  the observed data and the 

prior have on the results of the inference. 

The issue of assessing priors in the case of aging is addressed in section 4. 

2 Field Data and the Unavoidability of Bayes Statistics. 

Three steps will be needed to prove that classical statistics is unsuitable if field 

data are of concern. For ease of understanding, each step will be gone in an ad-hoc 

subparagraph. 

2.1  Classical Statistics Cares also of “What Might Have Been” 

Suppose we are to measure some unknown physical quantity. We have at our 

disposal two different instruments, the error of the i-th instrument is I, i=1,2. 

Both errors are acceptable, so we decide to toss a fair coin with the stipulation that 

the result “head” will cause the instrument #1 to be used. We toss the coin, and it 

obtains head. We are orthodox frequentist and we want that in the long run the 

sample standard deviation will be the same as the standard deviation foreseen by 

error theory of classical statistics. Which error shall we attach to the measurement 

we made, 1 or rather (1+2)/2? The correct answer is the second one. So classi-

cal statistics takes into account also what might have been (it might have obtained 

“tail”).  

2.2 The impact of Stopping Rules in Classical Statistics 

A type I test is terminated at a pre-established time t0. A type II test is stopped 

as soon the  k-th failure occurs, k being stated in advance. 

Consider the Maximum Likelihood Estimator (MLE) of the unknown mean life 

of an exponential distribution. This estimator is the ratio between the random val-

ue of the observed total time on test and the observed number of failures. The lat-

ter quantity is random in a type I test, and is a constant in a type II test. 

We note that the domain of variability of the MLE changes according to the 

type of test. In type II test the value of the MLE ranges from 0 (k components fail 

as soon as the test is started) up to + (the  k-th failure never occurs). As opposite, 

in a type I test the upper bound of the value of the MLE  is equal to nx t0, where n 

is  the number of the on test components. The upper bound is obtained when none 

of the on test components fails by t0. 

Imagine you want to assess by the MLE, the 90% interval estimate of the un-

known parameter of an exponential distribution. You then carry out a type I and a 

type II test and both  give rise to the same observed value of the MLE. Are the 

90% interval estimates produced by the two tests the same? The right answer is: 

“no”. This is so because to forecast the future (to assess the interval estimate) clas-

sical statistics does not concentrate on what was (the observed data) but rather it 



The RAMS Analyses in the Face of Ageing.               The Bayes Approach.      3 

takes into account also what might have been (i.e. the non coincident variability 

domains of the MLE in the two types of test). 

By the same token, the interval estimate obtained under the sampling plan of 

field data is different from the interval estimates obtained under a type I or under a 

type II test which produced the same  data as those gathered by observing compo-

nents at the plants where they are operating. 

2.3 Quantifying the Impact of the Stopping Rules.  

In the case of a type II test, the probability distribution of the MLE is the user-

friendly  (2) distribution. 

If a type I test is of concern [1] the distribution of the MLE is an involved linear 

combination of  n+(n+1)n/2 terms. Each term is an unhandy truncated (2) distri-

bution. 

The sampling plan of field data is so complicate, that only the Laplace trans-

form of MLE density is available [1]. 

In view of the above, interval estimation is impossible in the frame of classical 

inference from field data. 

3. Prior Knowledge and Classical Statistics 

Let x1,…,xn be a sample from the Gauss distribution with unknown mean  and 

known standard deviation . It is well known that in the long run 96% of time it 

will be: 
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There are infinitely many interval estimates of  at the 96% confidence level. 

All of them are probabilistically equivalent to one another. So should we chose the 

estimate 
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in the long run we would be right as 96% of time, as well. Indeed the integral  of 

the standard Gauss density over the interval (-2,+2) is equal to the integral of the 

standard Gauss density over the unbounded domain (-,+1.69); the value of both 

integrals is 0.96. 

It is not surprising that there is an infinite number of interval estimates corre-

sponding to the same confidence level. The value of the latter supplies the analyst 

with one equation, while two unknowns (the bounds of the interval) must be speci-

fied. 

Wald [2] and De Finetti [3] showed that when an orthodox statistician selects 

one of the probabilistically equivalent interval estimates, he simply makes a 

Bayesian estimate by using blindly one of the priors that can be defined on the 

variability domain of the unknown parameter. Prior knowledge does then have an 

important role in classical statistics. 
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4. Prior Knowledge in the Face of Aging 

4.1 The Statement of the Problem 

Prior knowledge cannot be expelled from statistics (no matter whether Bayesi-

an or classical), one can at the most minimize its impact on the results of infer-

ence. Cifarelli and Regazzini showed [4]  that among all the priors on some un-

known parameter which have the same values of the expectation and variance, the 

one which minimizes the impact of the non statistical knowledge is the prior be-

longing to the conjugate family of priors, if such a family exists. No conjugate 

family exists for the unknown parameters of any aging distribution [5, chapt..]. In 

this case: sensitivity analysis is the only referee in the match plaid by the prior 

knowledge vs. the observed data for the leadership in the inference; numerical in-

tegration must be used for computing the integrals of Bayes formulas. We will 

show how these two difficulties can be handled, with reference to doubly censored 

data from the Weibull distribution. The likelihood function at hand will be the  a  

more involved version of the function L(D,) [6] defined hereafter . The latter 

likelihood function applies when one observed one life of length t, one survival up 

to time ts, and m failures in the time interval (t1,t2). The possible more involved 

versions of L(D,), contain many specimens of each of the sample factors ap-

pearing in eq (3). The variability domains of the unknown parameters  and   are 

respectively (0,+) and (1,+). The related Bayes integrals are then to be com-

puted over these domains. 
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Should L(D,) (or any more involved version of it) be the only factor appear-

ing in the Bayes integrals, the latter could be numerically calculated [6] by apply-

ing the variable transform (4) which maps the original integration domain onto the 

unit square without introducing any singularity into the transformed integrand [7]. 
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Consider the pdf’s: 

The functions arrived at by applying the variable transform (4) to the pdf’s (5), 

are continuous  on the unit square. In view of this, if f()g() is the joint prior on 

the unknown parameters of a Weibull distribution, no numerical problem arises in  

applying the Bayes theorem to doubly censored Weibull data [7]. 
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4.2 Sensitivity Analysis-Suitability of the Proposed Priors. 

Any univariate distribution is uniquely defined by the set of all its moments [5, 

chapt…]. The latter are infinite in number, while in practice the analyst’s prior 

knowledge is never expressed by more than two moments, namely: the expecta-

tion and the standard deviation. In other words, the analyst can simply express his 

one opinion about the “general trend” of a univariate prior, the analytical form of 

the latter being immaterial in-so-far-as the selected family of pdf’s can represent a 

large variety of degrees of dispersion [8]. A joint pdf on two unknown parameters 

is uniquely defined by the moments of the marginals, plus the mixed moments [5, 

chapt….]. Analysts are incapable of assessing even the simplest of the mixed mo-

ments, i.e. the covariance. The product of marginals is then a joint prior matched 

to the non-statistical knowledge analysts can express [8]. In the light of the previ-

ous discussion, the pdf’s (5) are “suitable” for performing  a sensitivity analysis 

and eventually assessing a joint prior on  and ., because they allow the analyst 

to choose in the “very rich menu” of priors described in the next paragraph. 

4.3 The Sensitivity Analysis in Practice 

We will describe a graphically supported procedure for assessing the prior on 

the unknown parameters of the Weibull distribution. The  procedure was imple-

mented in the computer code IBW3 (Inférence Bayesienne à partir de la loi de da-

ta Weibull, release 3) [8], which makes  Bayes inference from doubly censored  

Weibull data. The assessed joint prior is proper , but some first order or second  

moment of its might not exist. Since first order moments and second order ones 

are the current deliverables of inference, IBW3 is equipped with test subprograms 

which ascertain whether or not the posterior possesses the moments possibly miss-

ing a priori.  In order to avoid abnormal ends, the missing posterior moments are 

not computed. The assessment procedure is interactive and is substantially the 

same for the two unknown parameters. It will be described with reference to . 

1. The analyst states a confidence level c0 and two bounds 1<2. 

2. It is set ci= c0+0.05i, i=-2, -1, 0, 1, 2. 

3. The codes: 

singles out the pdf  f() for which (1,2) is the shortest- ci%-

confidence interval; 

computes the related existing moments up to the order 2. 

4. The 5 assessed priors are represented on the same graph; the moments of these 

priors are reproduced on an aside-table. 

By examining the graph and the summary of the moments, the analyst can decide 

either to stick to the assessed prior or to enter a new value of c0 for the sake of ob-

taining a more (less) dispersed pdf. 

The prior eventually assessed by the above procedure can be: 

a. A proper pdf with neither first order nor second order moment. 

b. A pdf whose expectation takes any of the possible values in the variability do-

mains of the two parameters (0<<+, 1<<+); for both parameters and for 

any value of the expectation, the ratio between the standard deviation and the 
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expectation itself can range in an interval which, for all practical purposes, is 

equivalent to the unbounded interval (0,+) 

5. Concluding Remarks 

The discussion we have been entertaining so far, showed that practical RAMS 

studies must be supported by quite a bit of theory. The need for theory comes from 

the involved structure of the data used in RAMS analyses. The thorough under-

standing of the role of Bayesian methods in the RAMS frame was possible thanks 

to the research that ENEA and EDF have been jointly carrying out in the last fif-

teen years. 
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