

ANALYSES D'INCERTITUDES PARAMÉTRIQUES DANS UNE ÉTUDE PROBABILISTE DE RISQUES

Florent Brissaud - FMDS industrie

IMdR : GTR Incertitudes et Industrie

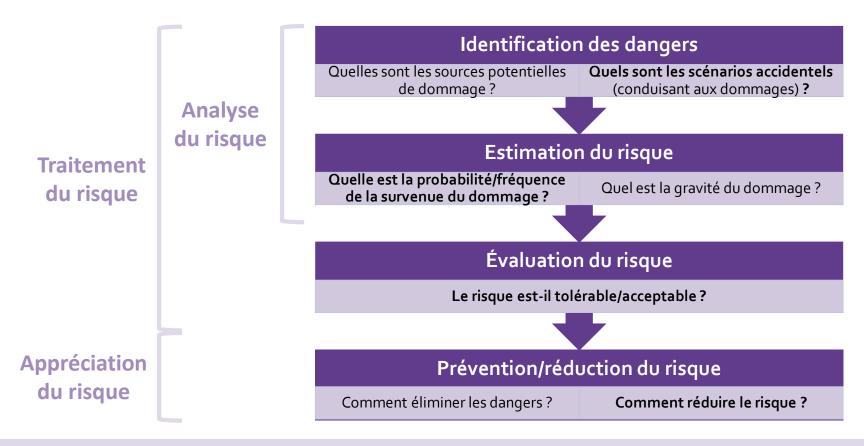
8 décembre 2016

EDF Lab, Chatou

SOMMAIRE

- I. Étude Probabiliste de Risques (EPR)
- II. Cas d'étude
- III. Modélisation et analyses
- IV. Conclusions

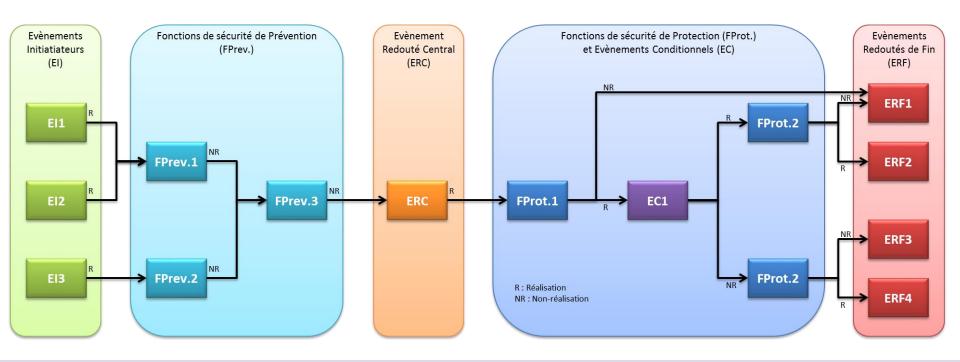
I. ÉTUDE PROBABILISTE DE RISQUES (EPR)


- I.1. Gestion des risques
- I.2. Présentation des EPR
- I.3. Résultats probabilistes ?
- I.4. Analyses d'incertitudes

I.1. GESTION DES RISQUES

Déroulement de la gestion des risques

□ cf. guide ISO/CEI 51 : 2014



FMDS industrie www.FMDSindustrie.fr

1.2. Présentation des EPR

Rôle d'une EPR dans la gestion des risques

- □ schématiser les scénarios accidentels
- estimer les fréquences de ces scénarios
- permettre d'évaluer et de réduire les risques

1.3. RÉSULTATS PROBABILISTES ?

Interprétation des probabilités

- « classique » : limitée aux évènements équiprobables
- a « fréquentiste » : fondée sur des « tirages aléatoires »
- « subjective » : plus pragmatique et adaptée aux EPR

Critères d'un « bon » résultat probabiliste

- □ cohérence : respecter la hiérarchie des évènements
- □ consistance : intégrer un maximum d'information
- □ robustesse : limiter les effets des incertitudes sur la cohérence

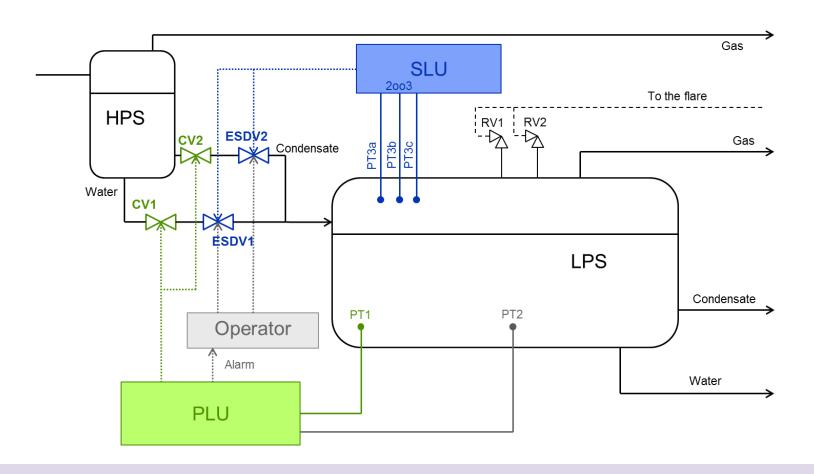
I.4. ANALYSES D'INCERTITUDES

Sources d'incertitudes

- □ complétude : phénomènes ou relations pris en compte
- □ modèle : adéquation du modèle pour représenter le monde réel
- paramètres : données d'entrée utilisées dans le modèle

Analyses d'incertitudes paramétriques

- 1. les données d'entrée sont des variables aléatoires, définies par des densités de probabilité
- 2. les données d'entrée sont tirées aléatoirement et un résultat est calculé pour chaque jeu de données
- 3. à la suite de plusieurs « tirages aléatoires » (Monte Carlo), une distribution des résultats est obtenue
- 4. les résultats sont fournis avec un intervalle de confiance (de dispersion), défini pour un niveau de confiance donnée


II. CAS D'ÉTUDE

- II.1. Équipement commandé
- II.2. ERC et évènements initiateurs
- II.3. Barrières de sécurité
- II.4. Données de panne

II.1. ÉQUIPEMENT COMMANDÉ

Séparateur basse-pression (LPS)

II.2. ERC ET ÉVÈNEMENTS INITIATEURS

Évènement redouté central

□ ERC : fuite du LPS à cause d'une surpression

Évènements initiateurs

□ EI1 : défaillance de la boucle de contrôle (cf. arbre de défaillances)

PT1, PLU, CV1/2 (2-parmi-2)

□ EI2 : « *gas blow-by* » depuis le HPS (o,2 /an)

□ El₃ : erreur humaine (o,1/an)

□ El4 : évènement externe (0,005 /an)

II.3. BARRIÈRES DE SÉCURITÉ

Barrières de sécurité de prévention

□ alarme avec action de l'opérateur (pour El 1)

■ PT2, PLU, alarme + opérateur, ESDV1/2 (2-parmi-2)

système instrumenté de sécurité (pour El1, El2 et El3)

PT3a/b/c (2-parmi-3), SLU, ESDV1/2 (2-parmi-2)

□ soupapes (pour El1, El2, El3 et El4)

■ RV1/2 (2-parmi-2)

Barrières de sécurité de protection / évènements conditionnels

□ incendie (70% si ERC)

□ explosion (40% si incendie)

□ personnes exposées (10% si incendie ou explosion)

□ personnes blessées (50% si personnes exposées)

II.4. DONNÉES DE PANNE

Modes de défaillance

- défaillances détectées en ligne (diagnostic), avec réparations
- □ défaillances révélées lors des tests périodiques (tous les 4 ans)

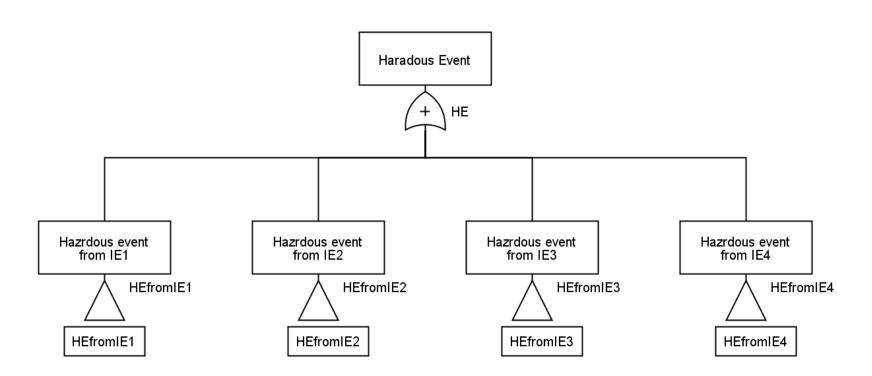
Matériel	Taux de défaillance	Couverture de diagnostic	Temps moyen de réparation	Autres paramètres
PTx	o,8×10 ⁻⁶ /h	60%	8 h	DCC: 10%
PLU	1,5×10 ⁻⁶ /h	67%	24 h	
SLU	1,0×10 ⁻⁶ /h	90%	24 h	
CVx	3,8×10 ⁻⁶ /h	30%	12 h	
ESDVx	2,7×10 ⁻⁶ /h	25%	12 h	tests partiels (6 mois) : 90%
RVx	2,0×10 ⁻⁶ /h	0%	12 h	

III. MODÉLISATION ET ANALYSES

III.1. Modélisation pré-ERC

III.2. Modélisation post-ERC

III.3. Modélisation des incertitudes

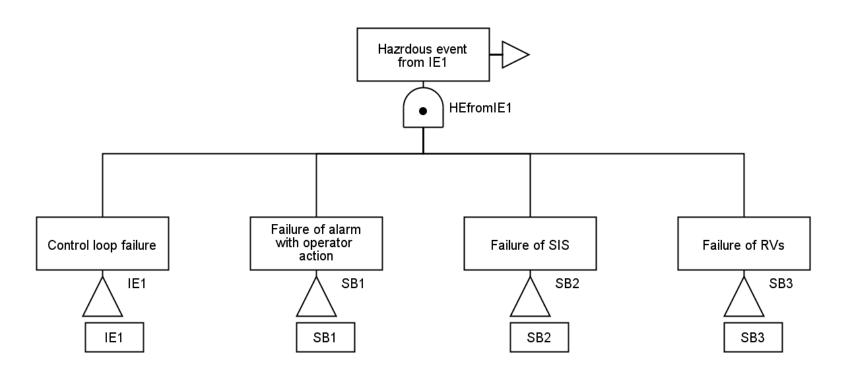

III.4. Analyses

FMDS industrie www.FMDSindustrie.fr

III.1. MODÉLISATION PRÉ-ERC 1/3

Modélisation par arbre de défaillances*

□ évènement redouté central (hazardous event, HE)

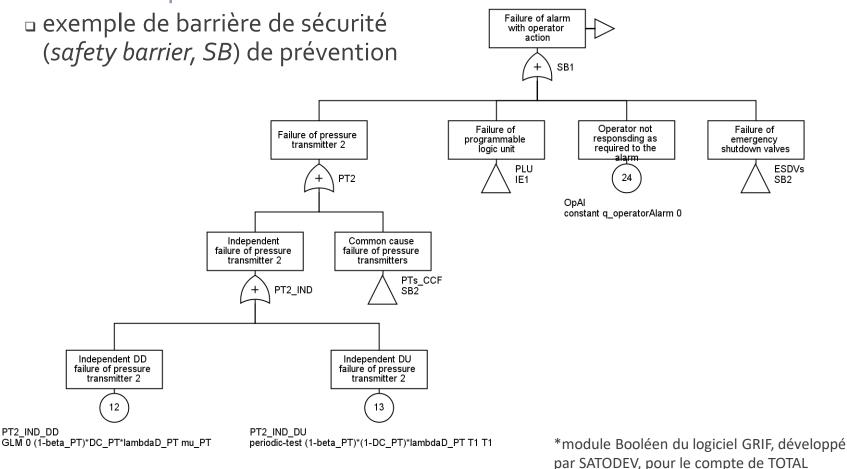

^{*}module Booléen du logiciel GRIF, développé par SATODEV, pour le compte de TOTAL

FMDS industrie www.FMDSindustrie.fr

III.1. MODÉLISATION PRÉ-ERC 2/3

Modélisation par arbre de défaillances*

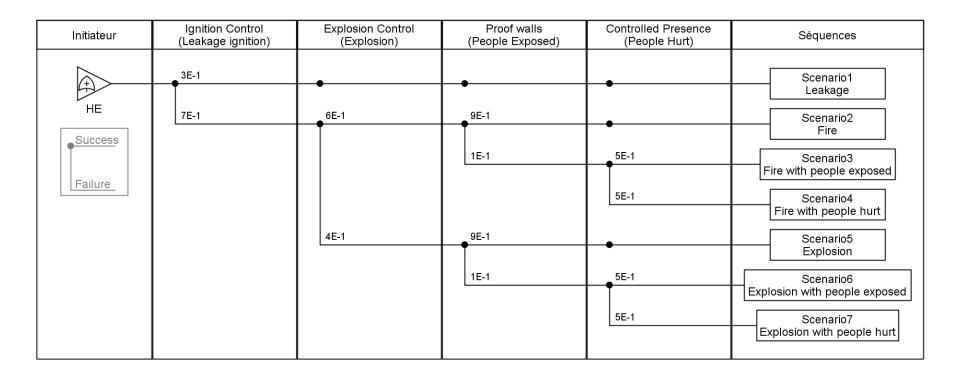
□ exemple d'évènement initiateur (*initiating event, IE*)



*module Booléen du logiciel GRIF, développé par SATODEV, pour le compte de TOTAL

III.1. MODÉLISATION PRÉ-ERC 3/3

Modélisation par arbre de défaillances*


^{08/12/2016}

III.2. MODÉLISATION POST-ERC

Modélisation par arbre d'évènements*

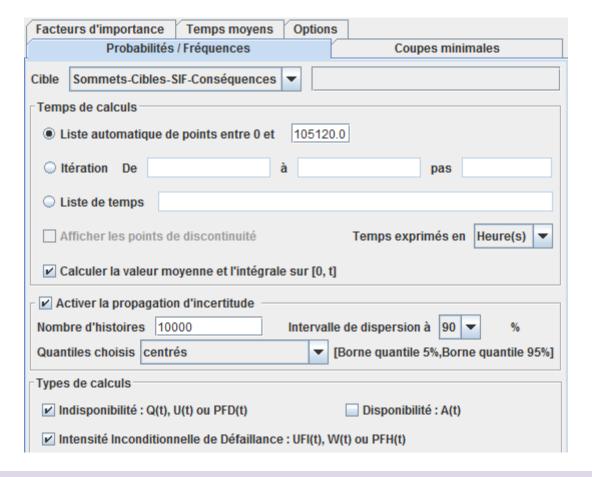
□ barrières de sécurité de protection / évènements conditionnels

^{*}module Booléen du logiciel GRIF, développé par SATODEV, pour le compte de TOTAL

III.3. MODÉLISATION DES INCERTITUDES

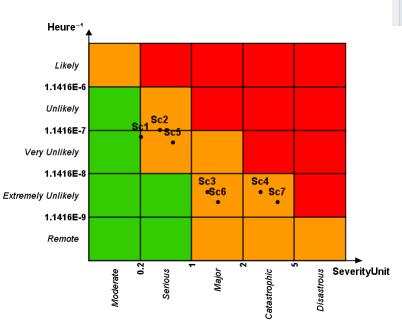
Configuration des incertitudes avec le logiciel GRIF

- activation des incertitudes via la liste des paramètres
- choix de la loi : uniforme, normale ou log-normale
- option « Macro »
 - O: 1 paramètre = 1 tirage (cohérence des valeurs)
 - X: 1 utilisation = 1 tirage (paramètres génériques)

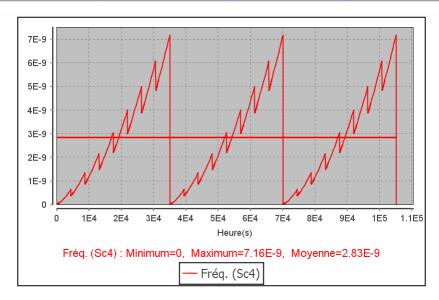

Nom -	Valeur	Activer l'incertitude	Loi	Macro
beta_PT	0.1	V	uniform 0 2E-1	
DC_CV	0.3	V	uniform 2E-1 5E-1	
DC_ESDV	0.25	V	uniform 1.5E-1 3.5E-1	
DC_PLU	0.67	V	uniform 5.7E-1 7.7E-1	
DC_PT	0.6	V	uniform 5E-1 7E-1	
DC_RV	0.0			
DC_SLU	0.9	V	uniform 8E-1 1	
f_IE2	2.283E-5	V	lognormal 2.28E-5 5 9E-1	
f_IE3	1.142E-5	V	lognormal 1.14E-5 5 9E-1	
f_IE4	5.708E-7	V	lognormal 5.71E-7 5 9E-1	
lambdaD_CV	3.8E-6	V	lognormal 3.8E-6 5 9E-1	
lambdaD_ESDV	2.7E-6	V	lognormal 2.7E-6 5 9E-1	
lambdaD_PLU	1.5E-6	V	lognormal 1.5E-6 5 9E-1	
lambdaD_PT	8.0E-7	V	lognormal 8E-7 5 9E-1	
lambdaD_RV	2.0E-6	V	lognormal 2E-6 5 9E-1	
lambdaD_SLU	1.0E-6	~	lognormal 1E-6 5 9E-1	
mu_CV	0.0833	~	lognormal 8.33E-2 2 9E-1	
mu_ESDV	0.0833	~	lognormal 8.33E-2 2 9E-1	
mu_PLU	0.0417	~	lognormal 4.17E-1 2 9E-1	
mu_PT	0.125	~	lognormal 1.25E-1 2 9E-1	
mu_RV	0.0833	~	lognormal 8.33E-2 2 9E-1	
mu_SLU	0.0417	~	lognormal 4.17E-1 2 9E-1	
PTC_ESDV	0.9	~	uniform 8E-1 1	
q_explosion	0.4	~	uniform 3E-1 5E-1	
q_hurt	0.5	~	uniform 4E-1 6E-1	
q_ignition	0.7	V	uniform 6E-1 8E-1	
q_operatorAlarm	0.1	V	uniform 0 2E-1	
q_walls	0.1	V	uniform 0 2E-1	
T1	35040.0			
T2	4380.0			

III.4. ANALYSES

Configuration des analyses avec le logiciel GRIF


III.4. ANALYSES

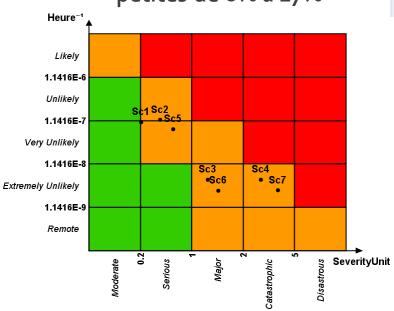
2/3



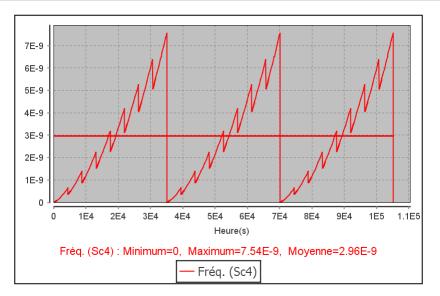
Résultats

□ option « Macro » désactivée

Synthèse U(t) W(t)			
Système	Moyenne	Moyenne	Max
HE	1.33E-7	[9.07E-9,4.77E-7]	3.41E-7
Sc1	4.13E-8	[2.53E-9,1.45E-7]	1.06E-7
Sc2	5.23E-8	[3.36E-9,1.85E-7]	1.34E-7
Sc3	2.96E-9	[6.79E-11,1.08E-8]	7.55E-9
Sc4	2.96E-9	[6.5E-11,1.08E-8]	7.54E-9
Sc5	3.44E-8	[2.2E-9,1.26E-7]	8.8E-8
Sc6	1.94E-9	[4.5E-11,7.04E-9]	4.96E-9
Sc7	1.94E-9	[4.37E-11,7.29E-9]	4.95E-9


III.4. ANALYSES

3/3



Résultats

- □ option « Macro » activée
 - les moyennes sont plus grandes de 0% à 5%
 - les bornes sup. sont plus petites de 6% à 17%

Synthèse U(t) W(t)			
Système	Moyenne	Moyenne	Max
HE	1.39E-7	[2.17E-8,3.97E-7]	3.62E-7
Sc1	4.24E-8	[6.36E-9,1.27E-7]	1.11E-7
Sc2	5.35E-8	[8.12E-9,1.59E-7]	1.4E-7
Sc3	2.98E-9	[1.35E-10,1.01E-8]	7.76E-9
Sc4	2.97E-9	[1.35E-10,1E-8]	7.74E-9
Sc5	3.58E-8	[5.35E-9,1.05E-7]	9.33E-8
Sc6	1.99E-9	[8.56E-11,6.64E-9]	5.2E-9
Sc7	1.98E-9	[8.47E-11,6.65E-9]	5.18E-9

IV. CONCLUSIONS

IV.1. Quelles analyses?

IV.2. Quelles améliorations?

IV.1. QUELLES ANALYSES?

Pourquoi effectuer des analyses d'incertitudes?

- □ pour tester la « validité » d'une EPR
- □ parce que les données d'entrée sont (forcément) incertaines
- □ parce qu'un résultat sans précision sur l'incertitude est inexploitable
- □ parce que les nouvelles normes (CEI 61508, CEI 61511, ...) l'imposent
- □ parce que nous disposons d'outils permettant de le faire

Comment réaliser les analyses d'incertitudes?

- □ avec un logiciel qui permet de le faire (e.g. GRIF)
- l'approche « 1 utilisation de paramètre = 1 tirage » est probablement la plus utilisée, mais pas la plus juste!
- l'approche « 1 paramètre = 1 tirage » implique des résultats moins optimistes en termes d'incertitudes

IV.2. QUELLES AMÉLIORATIONS?

Aspects « graphiques »

- □ représentation des EPR en « nœud papillon »
- □ représentation des incertitudes dans les matrices de risque

Prise en compte des incertitudes

- □ ajout de nouvelles lois pour les incertitudes (lois utilisées pour le REX)
- □ modélisation des incertitudes de modèle

MERCI POUR VOTRE ATTENTION

Vos questions sont les bienvenues