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Summary

Barrier Crossing (BC) is one safety related violation, and the analysis of BC can be undertaken in term of benefit, cost, and possible deficit. In order to
integrate the BC theory into the new BC analysis for the designer during the early design phase or in the re-design work, a method integrating the Self-
Organizing Map (SOM) is proposed. This is an artificial neural network which, on the basis of the information contained in a multi-dimensional space,
generates a space of lesser dimensions. The proposed method can be used, in one part, to foreseen the problematic level of a new barrier (prospective
analysis), and in another part, to identify or to regroup synthetically the barriers of a given Human-Machine System (HMS) which were often crossed
(retrospective analysis). Finally, application of this method into the BC analysis on experimental railway simulator has been implemented, and some results
have been presented.

Le Franchissement de Barrière (FB) est une violation de la sûreté, et l'analyse du FB peut être entrepris en terme du bénéfice, du coût, et du déficit
potentiel. Afin d'intégrer la théorie du FB dans l’analyse du franchissement d’une nouvelle barrière au début de la conception ou pendant la re-conception,
une méthode basée sur des cartes auto-organisatrices (SOM) est donc proposée. C'est un réseau de neurones artificiel qui, sur la base de l'information
contenue dans un espace multidimensionnel, produit un nouvel espace de dimension moindre. La méthode proposée peut être utilisée, d’une part, pour
prévenir le comportement humain face à une nouvelle barrière (analyse prospective), et d’autre part, pour identifier ou regrouper synthétiquement les
barrières d'un Système Homme-Machine donné qui ont été souvent franchies (analyse rétrospective). Finalement, l'application de cette méthode dans
l'analyse du FB dans un simulateur ferroviaire a été mise en application, et quelques résultats sont présentés.

Introduction

The traditional approaches to HRA became the target of widespread
criticism in the beginning of the 1990s. Researches on the 1st generation
HRA approaches show that the results obtained by different human
centered methods often differ one from another [1]. They have been
considered to be inadequate in explaining the real issues confronting
operators and maintainers in Human-Machine System (HMS).
�  There has not yet been a demonstration of satisfactory levels of

between-expert consistency/agreement in use of expert-judgment
methods, the accuracy of predictions is not satisfied.

�  Some approaches require a strong operational database or
knowledge on human error in order to assess or estimate the
probability of human error occurrence. Most industrial application
cannot use those methods because this database or knowledge
does not exist or is incomplete [2].

�  Insufficient calibration of simulator data because the simulator is
not the real world, the problem remains of how raw data from
training simulators can be modified to reflect real-world
performance; The other disadvantage is that the simulation
experiment data did not always support this kind of model [3].

�  Most of them did not realize that Performance Shaping Factor
(PSF) difficult to be dealt with alone, it should be treated with
system conditions; The relationship between various PSFs was
not taken into account; Thirdly, some PSFs, such as managerial
methods and attitudes, organizational factors, cultural differences,
and irrational behavior were not adequately treated.

As a result of this awareness, a number of different methods and models
(so-called 2nd generation HRA) have been proposed, e.g. ATHEANA
[4], CAHR [5], COGENT [6], CREAM [7], HDT [8], HERMES [9],
MERMOS [10], RECUPERARE [11] etc. Based on a requirements
table structured according to the criteria of objectivity, validity and
reliability, these methods/models were comprehensively evaluated [12].

After systematic survey on 2nd generation HRA methods, one may find
that few of them can be used to accomplish the on-line safety analysis;
In addition, it should be noted that many of these methods have not yet
matured into full-blown HRA methods.

In order to consider both off-line and on-line prevention support
specification into the global system development during the safety
analysis phase, a new approach APRECIH (French acronym for
Preliminary Analysis of Consequences of Human Unreliability) [13, 14]
is therefore proposed. It is divided into four main steps:  functional
analysis, procedural and contextual analysis, human task feature
identification, consequence analysis. APRECIH was firstly extended to
specify a multi-objective analysis of safety related violation called
Barrier Crossing (BC) [15].

BC is a safety related violation. The analysis of BC can be undertaken
in term of benefit, cost, and possible deficit.  To integrate the BC theory
into the new BC analysis for the designer during the early design phase
or in the re-design work, after discussing the existing problematic and
the selection of adopted neural network model, a method integrating the
Self-Organizing Map (SOM) is proposed in the following section, and
then, we present experimental results from the application of SOM to
our BC experimentation data. The final section provides conclusions
and offers future research directions.

Reminder of BC analysis

There are often some differences between the task prescribed by the
designer and the effective task in its operational context due to various
individual or technical or environmental factors. In some industry
fields, for instance NPP, there is “waiver” which sometimes occurs. In
this case, the utility waiver report should be submitted for the approval
of safety authorities prior to execution.

During the review of waiver report, it is always difficult to evaluate and
then judge if it is acceptable, as there is no existing guideline or
technical issue to be followed. In fact, even if both of normal operation
condition (including start-up, power operation and outage) and
incident/accident condition have generally been taken into account
during the design period, this kind of activity is rarely predicted by the
designers as it belongs neither to the designer’s normal operation
condition, nor to the incident/accident one.

For the user of HMS, the routine operation condition is sometimes
different from the one of designer, it includes,
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a. The work conditions predicted and defined by the designer;
b .  The work conditions accepted by the user, they can be further

divided into two subgroups:
b1. Some conditions which have been listed by the designer as the

unacceptable conditions during previous design phase, they are
accepted by user after a compromise among various individual or
technical or environmental factors;

b2. Some conditions that have not yet been taken into account by
designer, or have been realized ambiguously and have not been
written down.

User tolerates both of subgroups after an operation period without
occurrence of any incident/accident.

The waiver can be seen as the case (b). The activities relative to this
kind of work condition have occasionally been implemented by the
utilities. Unfortunately most of 2nd generation HRA methods have not
taken into account this issue, neither does the traditional risk analysis
methods for designer. “Rule violation tasks should be assessed where
the technique claims to be able to quantify such error types”[1].

BC can be considered as migration. Figure 1 is one simplified process
of migration mode in the operation of HMS. In the figure,
“decommissioning” means the action of taking a HMS out of service.
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Figure 1 – Process of migration mode in the operation of HMS

The BC can be analyzed according to three attributes [2],
The immediate cost of crossing: in order to cross or remove a barrier
the human operator has to modify sometimes the material structure,
and/or the operational mode of use. That usually leads to an increase in
workload and can have negative consequences on productivity or
quality.
The expected benefit: a barrier crossing is goal driven. Crossing a
barrier is immediately beneficial and the benefits outweigh the costs.
The possible deficit: a barrier that is crossed introduces a potentially
dangerous situation. So, the crossing of a barrier has also a possible
deficit due to the related risk.

Table 1 gives an example of the different qualitative probability values
for BC taking a binary viewpoint (either High or Low). In general
speaking, the probability of crossing a barrier will be high when the
benefit outweighs the cost and the perception of the possible deficit.

As indicated in the table 1, the probability of the particular cases (e.g.
case 1 and case 8) can be easily determined: case 1 represents a
situation with a high benefit, low cost and low possible deficit, so it is
very likely that such barriers will always be crossed; Case 8 represents a
situation with low benefit, high cost and high possible deficit, so, it is
very likely that this case will never be crossed.

For other cases, it is not so easy to classify or distinguish the level of
the probability (or consequence) of BC (whose outcome is
undetermined (?)); Secondly, if the sub-category regarding each
criterion is divided into more detail (e.g. benefit may be determined as
very low, low, normal, high, very high, as well as the cost and possible
deficit), the classification of the final probability of BC will be more
difficult (i.e. more numerous the sub-levels are, more difficultly the
identification of probabilistic level of BC is).

Case Benefit Cost
Possible
deficit

Probability of
crossing

1 HIGH LOW LOW HIGH

2 HIGH LOW HIGH ?

3 HIGH HIGH LOW ?
4 HIGH HIGH HIGH ?
5 LOW LOW LOW LOW
6 LOW LOW HIGH LOW
7 LOW HIGH LOW LOW
8 LOW HIGH HIGH LOW

Table 1: Example of probability of barrier crossing [16]

Moreover, during the BC analysis, for each barrier class, the levels of
all three indicators (benefit, cost, possible deficit) are usually provided
in term of four sub-criteria _ productivity, quality, safety and workload
(usually, some of them may consist of several aspects, e.g. safety may
be considered as, in railway domain, e.g. face-to-face collision,
overtaking collision, derailment etc.). It will be more complicated to
directly identify the final probabilistic level of one BC, to easily group
the similar BCs in synthetic way, and will be more difficult to make the
prediction for the probabilistic level of new BC.

To solve this kind of problem, furthermore, and to integrate the BC
theory into the new BC analysis for the designer during the early design
phase or in the re-design work, a method integrating the Self-
Organizing Map (SOM) is then proposed.

A method to analyze the problematic level of BC

Based on the BC analysis according to the benefit, cost and possible
deficit, we would like to easily find out how these indicators influence
the final crossing/non crossing result, the intra-relations (between the
different sub-criteria for same indicator) and/or inter-relations (between
three indicators), and which barriers are similar (they have similar
features) among all barriers of HMS, or in other words, grouping or
classification of all these barriers in several categories.

Normally, for the given barriers (e.g. during the simulator experiment),
crossing of a barrier can be easily observed, it means that all these
barriers can be divided into two groups _ barriers crossed and barriers
respected/non crossed. However, it isn’t easily to know which barriers
are similar ones among all barriers. In addition, for the barriers to be
studied in a HMS, their final synthetic/probabilistic levels of the
crossing are unknown in advance, i.e. we are not sure how many final
output classes are suitable. Thirdly, when the (re)design of a new barrier
needs to be implemented, it’s better to predict, first of all, its final
probabilistic level of the crossing, then retrospectively, integrating the
user’s viewpoint during the early phase of the (re)design. So it evokes
the artificial neural network, Self-Organizing Map (SOM).

Setting up of Self-Organizing Map (SOM)

As an artificial neural network model, the Self-Organizing Map (SOM)
as originally proposed by Kohonen (1982) is designed for
multidimensional data reduction with topology-preserving properties,
and thus they are also known as Kohonen maps. Previous applications
of SOM methodology resulted in some successful implementations for
solving a variety of categorization, pattern recognition tasks, reduction
of dimensions and the extraction of features [17].
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As there are a number of technical issues that must be dealt with in the
application of both neural network logics in general and Kohonen’s
algorithms in particular. The explanation of these issues in detail is
beyond the scope of this paper. So, only the aspects that are relative
with our project will be introduced briefly.

Generally, the SOM network is based on an unsupervised learning
algorithm [18]. A supervised-learning algorithm can be sometimes used
if the input vectors are known to belong to some predefined classes, a
more detailed description of the training process for the supervised-
learning algorithm can be found in [17, 19]. In other words, there is no
outside information that denotes a correct classification of the input data
vectors. A SOM network constructs a low- (one or two-) dimensional
mapping in order to detect the inherent structure of high-dimensional
input data in a visually easily unsupervised manner.

The SOM network architecture consists of two neural layers (see figure
2 for a graphical illustration of a SOM).

Output SOM units
(2 dimensions)

3-dimensional weight
vector Wj for each 

SOM-Unit

3-dimensional
input vectors

ξ
1 =[ 0.6,                 0.8,                   0.4]

ξ
2 =[ 0.2,                 1.0,                   0.6]

……

…

…

…

…K

Figure 2: Graphical illustration of an SOM architecture (notice that the
input data is 3-dimentional in the figure, it can be more than 3-
dimentions, e.g. 21 dimensions in the application section)

The input layer has as many neurons as it has indicators (e.g. benefit,
cost, possible deficit). Let m be the number of neurons in the input
layer; and let nx∗ny the number of neurons in the output layer which are
arranged in a rectangular or hexagonal patterns with x rows and y
columns, which is called “the map”. Each neuron in the input layer is
connected to each neuron in the output layer. Thus, each neuron in the
output layer has m connections to the input layer. Each one of these
connections has a synaptic weight associated with it. Let Wj the weight
vector associated with the connection between m input neurons i=1,…,
m and one output j ( j=1,…, nx∗ny) (see figure 2).

The SOM tries to project the multidimensional input space into the
output space (SOM map) in such a way that the input patterns whose
variables present similar values appear close to one another. In our case,
the input data could be BC indicator information. Each neuron in the
output layer learns to recognize similar input patterns whose images,
therefore, will appear close one another on the created map. In this way,
the essential topology of the input space is preserved in the output
space. To achieve this, SOM uses a competitive algorithm known as
“winner takes all”.

The SOM algorithm can be briefly described by the following iterative
procedure (see figure 3):

Firstly, the initial Wj ( j=1,…, nx∗ny) are given small random values, or
other initialization method can be adopted which allows the
computation/training of the SOM faster (e.g. Wj are initialized linearly)
[17]. These values will be corrected as the algorithm progresses
(training). Training proceeds by presenting the input layer with barrier
indicators.

The input indicator vectors ξ can be presented sequentially (one barrier
at a time) or in batch  (the data set is presented to the SOM as a whole
such that the SOM is trained faster, and the new weight vectors are

weighted averages of the data vectors) from the set of training vectors
and compute the Euclidean distances Dj = || ξ  – W j || (j=1,…, nx∗ny)
between this input indicator vector and each of the present values for
the units' weights vectors. Here is an example of input vector, if
"benefit"= normal, "cost"=very low, "deficit"=low, then input vector
ξ is [0.6, 0.2, 0.4]; The Euclidean distances of map units 1, …, nx∗ny are
computed through this input vector ξ [0.6, 0.2,0.4] minus the current
weight vector for each SOM-unit (Cf. figure 2). The output neuron for
which min|| ξ – Wj || is the “winner neuron”.
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Figure 3 SOM training algorithm flowcharts

Let such neuron be “k”. The algorithm now proceeds to change the
synaptic weight vector Wj in such a way that the Euclidean distance is
reduced. Then a correction takes place, which depends on the number of
iterations already performed and on the absolute value of the difference
between ξ and Wj. But other synaptic weight vectors are also adjusted in
function to how near they are to the Best-Matching Unit (BMU)1

neuron k and the number of iterations that have already taken place [19,
20]. Update of weight vector Wj is performed by

                                   [1]
  _ − learning rate
  φ − neighborhood function

For instance, in the figure 2, neuron k is BMU, Wk will be updated
according formula [1]. In the formula [1], the learning rate _ controls
the magnitude of weight updates and is reduced gradually. In addition,
the SOM learning uses a neighborhood function φ (j, k)  whose value
represents the strength of the coupling between unit k and its neighbor
units j during the training process [20]. For example, if the current
training radius in the neighborhood function φ (j, k) is 1 (see figure 2),
the weights of six neurons/units around the neuron k will be also
adjusted respectively.

The training is done in two phases: rough training with large (initial)
neighborhood radius and large (initial) learning rate, and fine-tuning
with small radius and learning rate.

With proceeding sequences of input vector presentations (i.e. one input
vector or one batch at each iteration), the weights vectors corresponding
to respective winning units rapidly become prototypes or
"representatives" of a specific type of input indicator data set. The
procedure is repeated until complete training stops.

For the SOM output layer, firstly, one or two dimensions can be given
for testing. The number of output layer neurons may be reduced
according to the training situation so that the optimal SOM map size
can be found.

                                                  
1 BMU: the output layer neuron whose weight vector is closest to the
input vector ξ is called Best-Matching Unit (BMU).

)( WjWjWj −+← ξηφ



λµ13 - ESREL 2002 European Conference 4

Proposed method integrating SOM for the analysis of BC

Safety structure of each given HMS can be interpreted in terms of
several barriers. The designers implement their system design works
complying with the relative regulations (particularly safety aspects),
standards, technical guidelines, etc. In order to reduce the occurrence of
human error or to limit failure propagation or to protect the human
operator from technical failures, designers provide users with barriers.
The objective of design should be to make the benefit low, the cost high
and the human operator’s perception of the deficit high [2].

To achieve or achieve as optimally as possible the objectives, a method
integrating SOM network is proposed. During the analysis of BC, the
effective cooperation between designer and utility/user is indispensable.
The general process of this analysis is outlined as following (see figure
4):

Data collection of BC indicators

SOM training 
ended?

Data preprocessing

Final crossing  probability classes 
of all barriers

Evaluation in term of benefit, 
cost, possible deficit

Is there Case (b)? 
Barrier configuration 

needs changed?

No

Yes

New barrier design with 
extended APRECIH

Operation 
without redesign

Yes

No

A given HMS with n barriers 
(barrier number will be changed if 
barrier configuration is updated)

Confirm its
predictive crossing 

probability level 
with SOM weights

the weights values between 
all barrier indicators and 

SOM output units

Figure 4 General process of the Barrier Crossing analysis. The work
conditions in a given HMS have been predicted and defined by the

designer; The case (b) includes two subgroups (see the
relative section).

Firstly, all barriers of a given HMS should be identified, including
material barriers, functional barriers, and immaterial barriers. In fact,
during the design phase, most barriers have been taken into
consideration, anyway, these barriers are designed from the point of
view of designer, especially for a new HMS.

After identification of the barriers of a given HMS system, data
collection may be implemented. Data sources include, for instance,
operation experience feedback. For those barriers of case (b), they can
be adjusted only after the good operation record has been shown with
the crossed barrier. The barrier indicator data may be obtained during
each time of crossing; The second important data source is simulator
data. The simulator experimental data can meet two aspects of demand:
one is to collect the barrier indicator data that can fill up the blank in
previous human events; the other is to enhance understanding of
operator performance during the crossing of barrier. Of course, BC data
can be derived sometimes from various user-related report (e.g. near-
miss report, internal audit report, surveillance report etc.) and
observations on the real expertise and operator interview are usually
helpful.

Thirdly, in order to do the SOM training in the next step, preprocessing
of raw data is needed. For each performance criterion (row) in table 3,
there are, in our case, 5 sublevels for each barrier indicator (column):
benefit very high, benefit high, benefit normal, benefit low, and benefit
very low, same thing with the cost and possible deficit.

Barriers Level of benefit Corresponding input
data for SOM

No. 1 High 0.8
No. 2 Normal 0.6
No. 3 Very high 1.0

... ... ...
No. n Very low 0.2

Table 2 An example of data transformation

To be able to transform these qualitative data into numerical data,
which are recognizable for the SOM training (the transformation will be
unnecessary if three indicator numerical data can be provided), one can
treat them into some discrete data: very high _ 1, high _ 0.8, normal _
0.6, low _ 0.4, and very low _ 0.2. An example for one criterion
"benefit" is shown in table 2. It should be noted that there are of course
another transformation methods.

Regarding to the parameter setting or initialization for the SOM
training, refer to the application section. The training is done in two
phases: rough training with large (initial) neighborhood radius and large
(initial) learning rate, and fine tuning with small radius and learning
rate. Output of SOM consists of two aspects:
�  Group classification of final problematic level of given barrier data

set;
�  Weights trained by SOM, which can be used to predict the final

location probability of new barrier.

In the former aspect, the group classification may be more than two,
their corresponding output unit/location can be always found on the
output map layer for all the barrier patterns which have participated to
the SOM training. Anyway, one can usually find out the limit between
the barriers that are often crossed, as well as ones that are seldom
crossed. In addition, successful grouping of all the barriers can be used
to verify the pertinence of indicator determination for the BC analysis.

During the followed analysis of BC, if there is no group in which the
barriers are often crossed, i.e. there isn’t case (b), this HMS can be
operated without any change of barrier configuration (Cf. figure 4); If
not, some supplementary works will be needed for these barriers that
are often crossed. In the case (b), two subgroups of work conditions
should be treated respectively following the extended APRECIH
procedure [15],
� Firstly, for those conditions that have been listed by the designer as

the unacceptable conditions during previous design phase but
accepted by user after a compromise among various individual or
technical or environmental factors, the barrier may be modified. As it
is tolerated by the user during routine operation, after relative
parameters of the barrier have been modified, e.g. procedure or
technical specification modification, set point modification, even the
physical modification etc., usually the relaxation of requirement
compared to the old one. This activity will be allowed to be
implemented in the future so that this barrier can be respected by
operator as one non-crossing barrier. In a word, the barrier is
transformed from crossed one to respected one.

�  Secondly, for those conditions that have not yet been taken into
account by designer, or have been realized ambiguously and have not
been written down, new barrier needs to be designed/established. It
can be any kind of barrier, e.g. physical material, regulatory
instruction etc.

� In the extreme case, if this barrier is observed often crossed during
normal operation without any negative record in the experience
feedback, i.e. the benefit is very high, the cost and the possible
deficit are almost neglectable, reference to the output map location of
this barrier in the SOM network, it can be finally removed.

In the two former conditions, one barrier should be modified or new
barrier should be added, with the well-trained SOM structure in which
the weights have been trained for this given HMS system, designer may
present the indicator data of new barrier or changed one into the SOM
network, the region where the maximum activity takes place can be
found out, it indicates the final probabilistic class that the present input
barrier belongs to. Based on this predictive result, one can
retrospectively reconsider the configuration pertinence of this barrier
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(see figure 4), final objective is to reduce the probability of crossing by
making the benefit low, the cost high and the human operator’s
perception of the deficit high.

One may find out, from above procedure, that the method proposed can
be used, in one part, to foreseen the problematic level of a new barrier
(prospective analysis), and in another part, to identify or to regroup
synthetically the barriers of a given HMS system such that those
barriers which were often crossed can be taken into account, and this
HMS system is finally optimized (retrospective analysis).

Application in railway experimentation

An application of proposed method has been implemented during a
railway experiment on the simulator.

Railway simulator experimentation

In order to study the risk perception and acceptability of human
operators when they cross barriers, and to study dependencies between
the criteria (benefit, cost, possible deficit), an experimental platform
was developed to simulate train movements from depots to another one
crossing transformation stations on which humans operate the products
on trains. Figure 5 is an interface sample of the experiment simulator.

There are three depots and three transformation stations, along the
depots, tracks and stations, several barriers were defined. For example,
different traffic lights _ depot, station and switching device signals: red
to stop a train or green to authorize it to proceed; When a train has
passed the signal, the traffic light should be switched to red, etc.

There are so far 19 persons who have participated to the simulator
experiment as “traffic controller”. They come from different countries,
have different educational level and different regional performance
characteristics. The experiment in which the proposed method was
applied consists of two steps:
� First step of the experiment with all the designed barriers active,
� Second step of the experiment with only barriers that are selected by

the human operator who controls the traffic, that means he/she may
cross several barriers which were being judged as crossable,

In these two experiments, 7 classes of barrier have been taken into
account:
� Signals for input/output movements at the depots;
� Signals for input/output movements at transformation areas;
� Signals before and after the shunting device;
� Stop signals at the transformation areas to transform the goods;
�  Announcement message for input/output movement into the

transformation areas;
� Direction of the movement of the train;
� Respect of the procedure that says that a signal has to be putting at

the red colour after the crossing of a train;

As for three BC indicators (e.g. benefit) of a same barrier, there will be
different values in term of different performance criteria of the HMS
(i.e. quality, productivity, safety, and workload). So, several
performance criteria should be considered for each barrier:
� The respect to the scheduled time,
� The number of treated products per train,
�  The traffic safety, includes collision face to face, overtaking,

derailment, synchronisation of the announcement made by the
operator before train dispatch and arrival,

� The human task demand load (or workload).

After each step of the experiment, a questionnaire, focused on the
evaluation of the performance interests of all barriers in terms of
benefit, cost, potential deficit and utility, is undertaken (Cf. table 3).

One example of data collection is shown in table 3. The evaluation of
crossing a barrier is implemented in terms of benefit, cost, potential
deficit and utility. By utility we mean the overall experts judgement of
the reliability related to the barrier crossing (in term of quality,
productivity, safety, and work load) [2].

Figure 5 An interface sample of the experiment simulator

For a same barrier and its three crossing indicators (e.g. benefit), there
will be different values from the different performance criteria of the
human-machine system, i.e., quality, productivity, safety, and workload.
BC indicators can be compared between different barriers and different
controllers in term of 7 different performance criteria, in term of entire
performance criteria as well.

Crossing of Barrier
Barriers Criteria Utility of

Barrier
Benefit Cost Possible

deficit
Advance on the

planning
0 3 0 0

Number of
products treated by

train

0 0 0 0

Safety: face-to-face
collision

2 0 0 3

Safety: overtaking
collision

2 0 0 3

Safety: derailment 0 0 0 0

Safety: input/output
movement message

0 0 0 0

Signals for
input/output

movements at
the depots

Workload 0 3 0 0

Table 3 Example of data collection table for BC analysis (0: very low;
1: low; 2: normal; 3: high; 4: very high)

Result and analysis

In 7 classes of the defined barriers, there are four former barriers’
classes whose crossing results have been recorded during the
experimentation. So, as the preliminary result, our analysis focuses on
these four kinds of barriers, i.e. four kinds of traffic signals have been
analyzed.

In these experimental data, two different SOM training modes may be
divided:
�  First one is mono-criteria mode, SOM network is trained with the

barrier data in term of each performance criterion, i.e. seven barrier
data sets can be derived: Data set of respect to the scheduled time;
Data set of number of treated product per train; Data set of safety:
face to face collision; Data set of safety: overtaking collision; Data
set of safety: derailment; Data set of safety: synchronisation of the
announcement; Data set of workload.

�  Regarding to the second data type _ multi-performances mode, the
barrier indicator data set consists of entire performance criteria, i.e.,
for each barrier, there will be 21 variables, i.e. 21 dimensional input
data (e.g. all item data in table 3 are spread out sequentially). It
allows us to synthesize the former seven mono-performance modes,
and to analyse the independence between these variables.
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Experimental applications were performed on a Pentium _ PC (Genuine
Intel x86 Family 6 Model 8 Stepping 1, 128 Mo RAM). In early
analysis phase, SOM training maps is implemented in C++. To improve
the visualization level of training results (e.g. weight distribution, U-
matrix diagram, output visualization grouping map with the label of
each input barrier pattern, etc.), final running environment has been
chosen as Matlab 5.3. SOM Toolbox has been used to some basic
function computations.

1. Looking up the optimal SOM map parameters
The barrier indicator data set has labels associated with the data
samples. In the unsupervised SOM training, there is only one label that
indicates the identification and the observation result of corresponding
barrier, e.g. “Cro1B1” means controller No.1 and the first barrier for
him, the observation result is ‘crossing”.

Besides of this kind of label, in the supervised SOM training, there is
another separate label that contains the crossing information that was
recorded during the experiment. The difference between the supervised
SOM and the unsupervised one is that, in supervised-learning
algorithm, the crossing information (first label of each barrier indicator
data, e.g. “Yes”) participates to the computation [17].

An input data example for the supervised SOM training is shown
hereafter,
Benefit Cost Deficit Crossing Identification
0.8 0.2 0.2 Yes Cro1B1
0.8 0.2 0.2 Yes Cro1B3
……
0.2 0.2 1.0 No Non7B4
……

One can see that each of the data lines gives one input data sample
beginning with numerical variables and followed by two labels. The
map can be labelled with these labels. The best matching unit (BMU) of
each barrier sample is found from the map, and the two barrier labels
are given to the map unit respectively (see figure 6).

The network parameters include the map size and the training cycles,
learning rate _, the neighborhood function φ etc. For the SOM training,
one dimensional output layer was tested firstly, the grouping result was
not satisfied (the frontier between different problematic groups was not
very clear) because of the irregular grouping region on the output layer,
better results has been found in the case of two dimensional output. The
number of output layer neurons became important during the followed
process.

After our several tests, it was found that the map size (11×4 for mono-
criteria mode, 8×5 for multi-performances mode) gave satisfactory
grouping results. According to this map size, the investigation indicated
that stable and satisfactory grouping results could be obtained by setting
the rough training iteration and then fine-tuning iteration. Usually, the
number of the fine-tuning cycles is 4 times of rough training one. The
learning rate _ is 0.5 for the rough training, and 0.05 for the fine tune
training.

2. Analysis results in term of mono-performance mode
In this first mono-performance analysis, all barrier data in the training
set were presented into SOM training network in term of 7 different
performance criteria. A supervised SOM training result in term of
mono-performance mode is shown in the figure 6. In this example, the
barrier indicator data were derived in term of the respect to the
scheduled time. There are four barrier (four different traffic signals)
indicator data for each controller, and the data of 15 former controllers
were provided to the SOM network for training, and the data of 4 latter
controllers were used to validate the prediction rate of this method.

Two maps in figure 6 represent the same SOM output map with the
different labels. Each hexagon corresponds one neuron in the output
layer, there are 4×11 = 44 neurons. The left map in figure 6 indicates
the output map units labeled with the first label of the input barrier
indicator data, and the right one in the figure indicates the map units
labeled with the second label.

From the left figure it is easy to see that all the input barriers have been
classified into two clusters. “Yes” in the hexagon means “crossing”, and
“No” means “non crossing”. By looking at the second labels that are
shown in the right figure, it is immediately seen that the corresponding
location of all the trained data samples has been found out, and the
similarity between different clusters has been visualized.

The left figure is often useful during the prediction of the final
problematic level of one new barrier or one modified barrier. If the
BMU of one barrier is located at the unit which was activated by one or
several training set data samples, the membership (final problematic
level) of this barrier can be easily determined; If it’s located at one
empty neuron which was not activated by any training set data sample,
the membership of this barrier can be then determined by comparing
with the status label of corresponding unit in the left figure.

It should be noted that cluster number may be more than two if the
problematic level for all the barriers in the input set of SOM can be
given in more detail.

Figure 6 the supervised SOM training result in term
of the respect to the scheduled time

3. Analysis results in term of multi-performance mode
The analysis of barrier crossing may be undertaken in term of multi-
performance criteria. In this mode, 7 performance criteria can be partly
studied, they can be also taken into account entirely and
comprehensively. The training result of 72 barrier data samples (15
controllers) is given in figure 7 in term of their entire performance
criteria. In this case, there are 21 variables (21 dimensional input data)
for each barrier in the input layer, output is two-dimension layer.

Compared with the mono-performance mode (Cf. figure 6), one can
find the better classification result in the multi-performance mode, as
the analysis in term of mono-performance mode is sometimes lack of
another impacting factors. For example, for the barrier “Non13B2”, it
was trained in the crossing cluster (see the right map in the figure 6) in
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term of mono-performance mode (the criterion respect to the scheduled
time) whereas it was trained in the non-crossing cluster (see the figure
7) in the multi-performance mode, because, in the former case, this
barrier data (benefit “3”, cost “0”, possible deficit “2”) can be
considered as “crossing” according to the barrier theory in term of the
respect to the scheduled time, but its final problematic level has been
classified in the non-crossing cluster if another 6 performance criteria
are also taken into account.

Figure 7 training results in term of multi-performance mode

Besides of the map labels figures, the component planes (e.g. 'Benefit',
'Cost', and 'Possible deficit') can be shown. Component planes are very
convenient when one want to visualize correlation between different
performance criteria or between different barrier indicators. This is
sometimes helpful during the retrospective analysis for a given HMS,
particularly in case of large number of input dimensions. It allows us to
visualize the layout of all the barrier data in term of the combination
between any barrier indicator and any performance criterion.

4. Prediction with the SOM training result and its accuracy
There are totally 76 sample data (19 ‘traffic controllers’) for the
simulator experiment. Along the experiment schedule, previous 60
sample data (15 controllers) were selected as the training set. Once the
training is completed, from now on, the following remaining 16
samples (4 controllers) were the prediction set.

When a new barrier indicator pattern in the prediction set (16 latter
data) is presented, each neuron computes in parallel the distance
between this input indicator vector and the weight vectors that it stores
in the SOM network, and a competition starts that is won by the neuron
whose weights are more similar to the input vector.

During the prediction process, if the prediction sample falls into an
active output map neuron (in the right map of figure 6), by comparing
with the left map of figure 6, it is classified as belonging to the class
corresponding to this active neuron. The prediction rate in term of
criterion of respect to the scheduled time is 75% (see table 4).

The column of observation is the result for all the barriers during the
experiment. 4 barriers crossing results were recorded automatically for
each controller. These are the reference values for the computation of
the prediction accuracy of the proposed method.

The column of prediction is the prediction result for all barriers by
computing with weight vectors stored in the SOM network. The
location of the BMU in the SOM map will be the prediction result for
each barrier. This is a parallel process with the controller experiment.
The final accuracy can be calculated by comparing between two
columns.

Serial no. Observation Prediction Accuracy
S17B1 Crossed Non crossed
S17B2 Non crossed Non crossed
S17B3 Crossed Crossed
S17B4 Non crossed Crossed
S18B1 Crossed Crossed
S18B2 Crossed Non crossed
S18B3 Crossed Non crossed (16-6)/16=75%
S18B4 Non crossed Non crossed
S19B1 Crossed Crossed
S19B2 Crossed Crossed
S19B3 Crossed Crossed
S19B4 Non crossed Crossed
S20B1 Crossed Crossed
S20B2 Crossed Crossed
S20B3 Crossed Crossed
S20B4 Non crossed Crossed

Table 4 Prediction result after SOM training in term of criterion of
respect to the scheduled time. In the table, “Serial no.” means the
controller number and the corresponding barrier number, e.g. “S18B1”
means controller No.18 and the first barrier for him. The underlined
items in column “Prediction” are the prediction results with the SOM
network, and may be different from the actual controller behaviors on
the simulator.

Conclusion and perspective

This paper has discussed a method integrating a neural model, namely
the Self-Organising Map, to the analysis of BC. For all barriers in a
given HMS, their final synthetic/probabilistic level of crossing can be
firstly classified as several classes, all the barriers are categorized
successfully showing the pertinence of indicator determination for the
BC analysis.

Retrospective analysis can be undertaken to identify or to regroup
synthetically the barriers of a given HMS system with non-supervised
or supervised SOM such that those barriers that were often crossed can
be taken into account.

Based on the SOM map obtained from the training set, predictions can
be made for the unknown/new barriers. Prospective analysis can be
equally implemented to foreseen the problematic level of a new barrier.
This can be used to support evaluation of present barriers and the
(re)design process so that the HMS system is finally optimized.

The experimental data have been analyzed in term of mono-
performance mode (3 input dimensions) and multi-performance mode
(21 input dimensions), it is noted that these data can be analysed in term
of any combination of the performance criteria if necessary.

Analysis of all the barriers that were often crossed may lead to some
new event indicators that are useful for the designer, the user and the
regulatory body.

Until now, the railway simulator experiment is still undertaken. Results
presented above are only preliminary analysis for our experiments. A
lot of further research works will be done, e.g., with the SOM training
result, the statistic layout (distributions) in term of each pair of
variable(s) both in the input data layer and in the output map can be
displayed so that the correlation between some sub-barrier indicators
may be found out. From this kind of visualization we can conform
many of the earlier conclusions derived from the component plane
visualization. This may be useful during the retrospective analysis of
BC for a given HMS.

It should be noted that there are only two predefined groups whose
status labels have been input into the SOM network during the
supervised training, in the future, after the identification of more groups
in the trained data, the number of the final problematic levels of these
barriers may increase.
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During the identification of the final crossing result, a barrier has been
judged “crossed” so long as one barrier in same class is crossed. In fact,
in a same class, several barriers have same features and functions, e.g.
there are totally 6 signals for input/output movements at the depots.
Some controllers removed a few signals, and the others removed all 6
signals, both of cases have been identified “crossed” at this experiment
stage. This phenomenon can be taken into account during the
identification of the final problematic levels/classes of crossing in the
future.

Moreover, it has been found out that there is even difference between
the barriers which belong to same barrier class in the questionnaire
sheet, e.g. it was observed that the signals for output movements at the
depots are always removed, in contrary, the ones for input movement
were sometimes respected. So the barrier class may be further detailed
in the questionnaire.

The judgment of whether a barrier will be crossed or not is subjective
and is, at this stage of the experiments, the controllers’ opinion.
Depending on the experience feedback and PRA in some real industry
fields, the collection of objective data should be started.

Based on the simplified simulator experiment, the application of the
proposed method will be finally applied for an urban-guided transport
management system.

References

[1] Kirwan B., Validation of human reliability assessment techniques:
part 2 – Validation results. Safety Science, 27, pp 43-75, 1997.

[2] Vanderhaegen F. et al., Risk analysis method of human deviation
in operational situations, Safety, Risk and Reliability – Trend in
Engineering, International conference, Malta, March 21-23, 2001.

[3] Zhang Z. et al., Study of Chinese operator reliability using NPP
simulator and application of HRA in PSA, IAEA-J4-RC589.3A,
Heidelberg, Germany, 1998.

[4] NUREG-1624, Technical Basis and Implementation Guidelines
for A Technique for Human Event Analysis (ATHEANA).
USNRC, United States, 2000.

[5] Sträter, O., Evaluation of Human Reliability on the Basis of
Operational Experience, Report GRS-170, Cologne, Germany,
2000.

[6] Gertman, D., Blackman, H., Human Reliability and Safety
Analysis Data Handbook, A Wiley-Interscience Publication, 1994.

[7] Hollnagel, E., Cognitive Reliability and Error Analysis Method
(CREAM). Elsevier Science, 1998, New York.

[8] Baumont G. et al., Method for quantifying human and
organizational factors in accident management, using Decision
Tree - The HORAAM method, Reliability Engineering and
System Safety, 70, Elsevier, 2000.

[9] Pédrali, M., Vers un environnement multimédia pour l’analyse
vidéo des causes d’erreurs humaines, application dans les
simulateurs d’avions. Thèse de l’Université de Toulouse, janvier
1996.

[10] Bieder, C., Le-Bot, P., Desmares, E., Bonnet, J-L., Cara, F.
MERMOS: EDF’s new advanced HRA method, Probabilistic
Safety Assessment and Management (PSAM 4), Mosleh, A. and
Bari, R.A. (eds), Springer-Verlag, New York, 1998.

[11] Baumont G., Modèle et Méthode RECUPERARE, une méthode
d’analyse des incidents intégrant la fiabilité humaine, Rapport
DES 371, IPSN, février 1999.

[12] Zhang Z., Spécifications d'une méthode pour analyser les
conséquences d'erreur humaine, working paper of LAMIH, pp 11-
14, 2001.

[13] Vanderhaegen F., APRECIH: a human unreliability analysis
method – application to railway system, Control Engineering
Practice 7 (1999).

[14] Vanderhaegen F., A non-probabilistic prospective and
retrospective human reliability analysis method – application to
railway system, Reliability Engineering and System Safety, 71,
pp1-13, 2001.

[15] Polet, Vanderhaegen, 2000. Analysis of deviated modes for risk
assessment, ESREL 2000, Foresight and Precaution Conference,
May 2000.

[16] Polet et al., Theory of barrier crossing. EAM’2000, European
Annual Conference on Human Decision Making and Manual
Control, pp 67-73, Ispra, Italy, June 2000.

[17] Kohonen T., Self-organizing map, Neurocomputing, 21(1), pp 1-6,
1998.

[18] Rousset P., Applications des algorithmes d'auto-organisation à la
classification et à la prévision, PhD Thesis, University of Paris 1,
1999.

[19] Hérault J. et al., Réseaux neuronaux et traitement du signal,
Hermès, 1994, Chapitre VII, pp 173-204.

[20] Rojas R., Neural Networks – A Systematic Introduction. Springer-
Verlag, 1996.



λµ13 - ESREL 2002 European Conference 9



λµ13 - ESREL 2002 European Conference 10


