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1. Introduction: what is aging? 

The 1996 edition of the French Robert dictionary gives three definitions for the word “aging”. 

1   The fact of becoming old or weakened with age – a normal physiological process 
experienced by all living organisms during the last phase of life. 

2 The fact of getting old or out-dated (the word “obsolescence” is given as being closely 
related to this second definition). 

3 A natural or artificially- induced process during which wines change and acquire their 
bouquet. 

According to the first definition, aging is essentially connected to everything living: nature, 
man, the heart, the spirit, animals, plants, a population… We could also extend this definition, 
however, to that which is “inert”, such as industrial components or installations whether they 
are in service or simply available for operation. 

It is a somewhat negative concept which inevitably leads to the notion of suspension of life 
and vital functions in the entity in question (death, for a living organism).  It is for this reason 
that, particularly in the industrial world, we focus on the concept of the lifetime of a piece of 
equipment, its “durability”. 

Aging is a progressive and ongoing process. Very often, it depends on a great number of 
influencing co-variables: period of operation, loads, physical properties of materials and 
operating conditions, to mention only those that generally play a preponderant role.  It 
translates into reduced efficiency due to a physical or chemical degradation mechanism 
characteristic of the component and of the materials it is made of, as well as to environmental, 
operating and maintenance conditions: wearout, fatigue, corrosion, erosion, irradiation, etc. 

According to the second definition, however, aging may also be triggered by other 
technological, or even social or economic factors: performance inferior to that of new and 



more modern equipment; concept, design or materials surpassed by new technologies; 
incompatibility or obsolescence of the control and command system and software; lack of 
spare parts; profitability limit reached; more stringent regulations; stricter safety margins and 
finally, evolution in the operating profile of installations and in environmental regulations. 

The effective period of operation of a piece of equipment or an installation will therefore 
depend on these various technical, economic and regulatory considerations. 

The 3rd definition given in the Robert suggests a more positive view of aging, indicating that 
there can be improvement with age: this is the image of the good wine that matures, and 
perhaps of the component that adapts to its type of stress, the maintenance program that can 
enable improving the performance of a component and thereby postpone degradation.  This 
type of improvement exists but, in any event, it is only temporary and, sooner or later, aging 
will inescapably be observed.  History shows us, in fact, that there are very few mechanical 
structures which “survive” over a century, with the possible exception of the Jens Olsen’s 
astronomical clock in Copenhagen, whose still “intact” civil engineering structures have 
required major repair and refurbishment over the centuries. 

We will recommend adopting the definition proposed by the OECD  Nuclear Energy Agency, 
and retained by the Electric Power Research Institute (EPRI, 1992): the process by which the 
characteristics of a system, structure or component (SSC) are gradually changed with time or 
use. 

We shall also recommend using the other terminology taken from Table 1 of the same 
reference. 

 

Table 1- Terminology (reference: NEA-OECD and EPRI-NEI-US NRC, (EPRI, 1992)) 

  (SSC = System, Structure or Component)   

• Acceptance criterion: specified limit of a function or condition indicator used to assess 
the ability of an SSC to perform its design function. 

• Aging: general process in which characteristics of an SSC gradually change with time or 
use. 

• Aging effects:  net changes in characteristics of an SSC that occur with time or use and 
are due to aging mechanisms. 

• Aging management: engineering, operations and maintenance actions to control within 
acceptable limits aging degradation and wearout of SSCs. 

• Aging mechanism (or degradation mechanism): specific process that gradually changes 
characteristics of an SSC with time or use. 

• Degradation: immediate or gradual deterioration of characteristics of an SSC that could 
impair its ability to function within acceptance criteria; if the process is gradual, there is 
aging; the process is caused by operating conditions. 

. Failure: inability or interruption of ability of an SSC to function within acceptance 
criteria. 

• Failure analysis: systematic process of determining and documenting the mechanisms, 
superficial causes and root cause of the failure of an SSC. 

• In-service inspection: inspection or test of the integrity of an SSC during operation or 
shutdown. 



• Maintenance: aggregate of direct and supporting actions that detect, preclude or mitigate 
degradation of a functioning SSC, or restore to an acceptable level the design functions of 
a failed SSC. 

• Service conditions: actual physical states which have an impact on an SSC (normal  
operating conditions, operating transients, errors, accidental states). 

 

There are therefore a number of possible definitions for aging. 

In terms of reliability, certain experts consider that if the failure rate or failure intensity is on 
the rise (called IFR, Increasing Failure Rate), then aging is occurring.  This appears to us to be 
an unjustified shortcut. 

Indeed, if two components are considered in parallel, and each has a constant failure rate but 
the two rates are different, it can be shown that the life distribution of the parallel system is 
not IFR; however  the failure rate is increasing on the average  (IFRA = Increasing Failure 
Rate in Average, (Barlow, Proschan, 1975)). 

Let us suppose that we want to calculate the mean life of an exponential component (the prior 
law of the exponential parameter will be taken as known).  It can be shown that the 
unconditional  or predictive  life distribution has a  decreasing failure rate function (Barlow, 
2002).  As a result, we cannot characterize aging in terms of IFR only. 

To resolve this problem in studies to detect aging in a piece of equipment, Clarotti (Clarotti 
and al, 2002) considered that aging appears when there is a clustering of failures around the 
mean life.  This definition corresponds to that of demographers. 

Basing his estimates on the work of Spizzichino (1992), Barlow (Barlow, 2002) said that, if 
two similar items (exchangeable items) taken among a total of n similar items have survived a 
life test, the “younger” item is the “best” if and only if their joint survival function is concave 
as described by Schur (Schur concave).  These very theoretical considerations have little 
practical value and work is currently under way in several American and Italian universities to 
represent Schur concavity.  

2 Two concepts of aging 

Consequently, if there is a clustering of failures, as described by Clarotti (Clarotti and al, 
2002), there may be aging.  Clarotti  further considers that this is not a sufficient condition, as 
the clustering of failures may be due to a design fault.  Clarotti considers also that field data 
are generally not sufficient for stating  whether the aging phenomenon becomes relevant 
during the time the component is expected to function (mission period). One solution to this 
dilemma is postulating a priori that the aging becomes relevant at an aging “initiation time” 
which is before the end of the mission period. The purpose of the observed data will be to 
confirm or deny the reasonableness of this hypothesis. After this initiation time, clustering of 
failure times becomes more noticeable than it was before. 

Failure results in a loss of function. Moreover, while in operation, a piece of equipment is 
progressively and continuously degraded  though it may not fail.  If its limits are not reached, 
function is not even altered, and the component continues to operate even though degraded; 
there is no loss of function. 

We can clearly see that there are two perceptions of aging, a “reliability-based” concept which 
is an “all-or-nothing” view: either there is loss of function (therefore failure) or the 
component can operate (but is perhaps degraded); and a “physical aging” concept which 
corresponds to the slow, continuous process of degradation of component properties and 
equipment functions. 



Table 2 compares these two concepts. 

We can immediately see that analyzing the two concepts will require different types of 
feedback and different approaches.  Once again, feedback  can clearly be seen as a strategic 
and indispensable element. 

Table 2. – The two concepts of aging 

Concept Reliability-oriented Physically-oriented 

Components concerned Essentially active components  Essentially passive components 

Degradation mechanisms Many Often only one 

Failure modes Many Often only one (that can be 
prevented thanks to 
monitoring) 

Speed of appearance of aging Relatively rapid, sometimes 
sudden 

Slow, a continuous degradation 
process 

Modeling Probabilistic (attempt to find a 
lifetime law using a sample of 
observed failures) 

- Physical, if knowledge is 
sufficient, as the single 
degradation mechanism is 
known 

- or statistical, based on 
degradation data observed 
at more or less regular time 
intervals 

Principal data (input data) Failures (loss of function) 

 

Degradations (for example, test 
data, wearout data, inspection 
data) 

Other data used Survival  data (right-censored 
data) 

Expert  assessments 

When possible, physical data 

Expert  assessments 

Analogous feedback 

Indicators sought Failure rate 

Failure intensity 

Probability of failure 

Mean lifetime 

Failure rate 

Failure intensity 

Remaining life 

Influencing co-variables 

Domain Reliability and maintenance, 
RCM methodology 

Physical probabilistic 
methodologies, condition-based 
maintenance 

 

3 Why should we be interested in aging in an installation? 

If the degradation mechanisms are well under control, the economic benefit of extending the 
life of an installation and its equipment is obvious, particularly for complex installations that 
require considerable investments.  However, in addition to the technico-economic benefits of 
extending the life, it is indispensable to identify the main vectors of aging, to detect them, 
evaluate them, rank them and take all necessary measures to mitigate or postpone them, and 
even to eliminate them.  



“Equipment lifetime” is unfortunately a “post mortem” concept.  We only truly know the life 
after the occurrence of a major and irremediable failure.  This case is rarely found in practice 
because we attempt to avoid such situations and generally, it is technico-economic 
optimization which determines lifetime in the industrial context. 

We should note that the engineer seeks to determine durability, which is the capacity of a 
piece of equipment to fulfill the expected function under given conditions of wear and 
maintenance, until a boundary condition is reached (the definition of European norm  EN 
13306, June 2001). This boundary condition may be characterized by the end of its service 
life, or by its unsuitability for technical and/or economic reasons or for other relevant reasons.   

In addition to real “post mortem” lifetime, the period that extends from fabrication to 
retirement, we can distinguish several kinds of life: 

- design life or intrinsic life or life predicted on design, which is the period during 
which it is expected that an SSC will function within its limits of acceptance; 

- residual life or remaining life: the period from a stated time to retirement of an SSC; 

- regulatory life, which corresponds to the moment at which an administrative 
authority forbids operation to continue; this life is dependent on a component’s 
technical condition, on operating and maintenance conditions, and on security 
constraints; 

- technico-economic life: beyond a certain point, the additional investments needed 
may not be amortizable in the future, or the industrial risk may be considered too 
high; it is generally this criterion which determines the shutdown or retirement of an 
installation and its equipment; 

- and finally, political life: a political decision may shut down the installation. 

4 Reliability-oriented concept of aging 

In this section, we shall particularly focus on the reliability-based perception of aging. 

The service life of any equipment, from commissioning to retirement, generally comprises 
three main phases, characterized by a chance function and specific failure rates (Figure 1): 

§ A period of “infant mortality” or, to be more positive, a period of running- in, 
which takes the form of a failure rate that drops with increased operating time or 
number of demands: during the period; the most fragile equipment or equipment 
with faults will be eliminated  during this period.  This is the burn- in period for 
electronic equipment, and the running- in period for mechanical components.  
During this phase, it is important to conduct tests or trials on an equipment sample 
so as to be able, with a good assurance of success (optimization), to set aside what 
does not meet specifications or dependability targets. 

§ A period of technical maturity, called the service life, characterized by a constant 
failure rate and during which mortality is random, accidental and sudden.  This is 
the normal period of operation for equipment; its design must be such that this 
period lasts longer than or at least as long as the mission assigned to the 
equipment.  We should note that because failures are, by definition, random, it is 
not possible during this period to optimize tests, in-service inspections or 
preventive maintenance. 

§ And finally, a third period of so-called aging, during which the failure rate of 
equipment will increase with time or demand (IFR). One aging indicator for this 
equipment will thus be any observed rise in the failure rate (or in the failure 



intensity).  Two parameters are therefore important to characterize aging: the 
instant at which aging appears and its kinetics, once it has been detected. 

Knowing the first parameter will enable optimization of preventive maintenance during 
the “selection of maintenance tasks” phase of the Reliability Centered Maintenance (RCM) 
method. Knowing the second will enable evaluating the speed at which the risk of failure will 
increase. 

 Burn in 
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Figure 1 .Evolution of the failure rate of a component as a function of time operation 

(age). 
This reliability-based vision essentially relates to active components.  They are subject to 
periodical preventive maintenance or refurbishment.  Aging generally first affects a sub-
component whose failure results in a total or partial inability to fulfill the component’s 
mission, or in a serious drop in operating performance.  The appearance of such failures 
appears to be random so that it is difficult to predict them and, therefore, to define an 
optimized preventive maintenance program. 
It is the role of Reliability Centered Maintenance to optimize preventive maintenance 
programs, ident ify critical components and define the maintenance tasks best suited to 
avoiding failures.  Equipment is monitored and feedback from this monitoring makes it 
possible to validate the preventive maintenance programs or, on the contrary, to adapt them 
periodically in light of observations. 
Design modifications, preventive and condition-based maintenance, refurbishment, and 
replacement of faulty parts or of an entire piece of equipment are all possible remedies to 
offset or postpone aging. 
Periodical tests or in-service inspections or, quite simply, monitoring of the equipment’s 
reliability parameters enable pointing up signs that aging has begun and providing assistance 
in determining the moment at which one of the remedies must be implemented. 
On an industrial plane, then, we must distinguish: 

§ Equipment to undergo preventive maintenance so as to maintain a relatively stable 
failure rate; the end of its service life will generally be accidental and sudden.  Such 
equipment is generally classified as “active”, and considered critical in terms of safety, 
availability and cost targets. 

§ Equipment not subject to maintenance will age naturally and deteriorate more or less 
rapidly, depending on the predominant physical phenomenon affecting it.  In the 
absence of maintenance, it will still be inspected or monitored regularly.  Such 
equipment is generally classified either as “passive” (and its behavior is monitored), or 
as active “non-critical” and failure is expected. 

 5 Physical aging 

This generally concerns passive equipment (structures, pipes, pressurized containers, etc.).  
The aging process is associated with a mechanism of degradation of the material with which it 
is made. 



The objective is to see that the degradation does not lead to a failure and a loss of function for 
the equipment: for example, corrosion will cause a through-wall crack (measurable effect) 
which can lead to more serious leakage or, more serious still, fast fracture (failure mode). 

Optimization to prevent this type of occurrence will involve condition-based maintenance or 
in-service inspection, which must make it possible preventively to detect the start of a 
deterioration triggered by a degradation process, and its propagation, before an actual break.  
Once a degradation has been observed (through monitoring), it is sufficient to perform the 
preventive tasks that will prevent the failure. 

For the materials used for electromechanical equipment, but also for concrete or the polymers 
used to sheathe electric cables, etc., the main degradation mechanisms are: 

§ thermal fatigue linked to the temperature cycles to which the equipment is subjected, 

§ crack-generating stress corrosion, 

§ erosion, 

§ mechanical wearout, 

§ embrittlement due to radiation, 

§ loss of prestressing in concrete, etc. 

 

To understand the process from incipient fault to propagation, to detect faults and anticipate 
their evolution, it is necessary to identify the degradation mechanism at work (Bouzaïene-
Marle et al, 2005)  and have precise knowledge of the physical phenomena and the physical or 
statistical laws of degradation linked to the mechanism:  this is one aspect of structure 
reliability (Figure 2). 
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Figure 2 . Evolution in a degraded condition 
 

In-service inspection and condition-based maintenance are the key elements in protection of 
passive components against degradation processes (Figure 3). 
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Figure 3 – Modeling degradations  

 

6  The consequences in terms of extension of lifetime 

Above and beyond the life initially projected at the time of design, the longevity of industrial 
equipment has major economic impacts: once equipment investment is amortized, operating 
costs are reduced, of course, but also capital is saved due to the elimination of the need to 
reinvest in new equipment. 

Extending the life of an installation implies understanding the equipment aging process and 
carrying out the necessary servicing, maintenance and refurbishment tasks, respecting 
operating efficiency, safety and regulations and understanding that requirements are 
increasingly stringent in these domains.  There are therefore socio-economic or industrial 
limits to the investments one is willing to make to extend the lifetime of installations or 
equipment. 

Strategies for defense against aging involve first taking into account potential degradation 
mechanisms from the time of design, putting in place a monitoring program to verify the 
validity of the design options chosen, gathering feedback and, finally, carrying out preventive 
maintenance and, where necessary, repair, modification, refurbishment or replacement of 
components which have reached their age limit or are obsolete in technical, economic or 
regulatory terms. 

We should note that for all active and passive equipment, maintenance and refurbishment 
operations have a cost, not only in financial terms but also in terms of outage, image, doses to 
humans, etc., implying deadlines and constraints which may impact the real lifetime of the 
equipment.  

Problems of technico-economic optimization will play a role in the choice among possible 
strategies. 

7 What do we now know about reliability-oriented assessment of aging? 

The most advanced work on aging today is done from a reliability perspective. 



How can we evaluate or measure equipment lifetime?  Beginning in the 20th century, experts 
based their work on studies of human demography which we can trace back to John Graunt 
(1620-1674), attempting to develop a theory of industrial reliability based on observation and 
analysis of operating feedback data (Graunt, 1662). 

These methods were transposed to many domains including the biomedical, pharmaceutical 
and economics sectors, with a view to modeling the lifetime of a company or a period of 
inactivity. 

The probability distribution of failure times can be characterized by: 

§ a cumulative distribution function F(t), which gives the probability that a component 
will break down before time t, 

§ a probability density f(t), which is the derivative of the preceding function and which 
represents the relative instantaneous frequency of failures as a function of time, 

§ a function of survival or reliability R(t), which is the complement of the failure 
distribution function: 

R(t) = 1 – F(t), 

§ a chance function or instant failure rate, which is the probability of having a failure 
within the next time interval, dt, knowing that the component functioned up to t. It 
represents the bathtub curve of Figure 1.1,  associated with the failure rate. 

§ a quantile tp which is the time for which a given proportion p of the component 
population is broken down. 

All distributions are completely defined by their first two moments: mathematical expectancy, 
or mean value, and variance, representing the uncertainty with regard to the mean value. 

In 1939, the Swedish mathematical engineer W. Weibull proposed a universal lifetime law in 
“A statistical theory of strengths of materials” (Ing. Vetenskaps Akad.  Handl., N° 151).  This 
law representing evolution in the failure rate λ(t) with time,t, is known as the Weibull law.  
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 It represents evolution in the failure rate during the three phases in the life of a component: 
youth, maturity, age (the bathtub curve of figure 1), and has generally two parameters: 

§ the scale parameter η, linked either to the end of the running- in period during the “youth” 
of the component or to the time at which aging sets in,  

§ the shape parameter β , linked to the intensity of the running in, when it is less than 1, or to 
the intensity of the aging kinetic, when it is more than 1; when it is equal to 1, the  
Weibull law becomes an exponential law representative of the occurrence of random 
failures, i.e. representing the service life or maturity of the component. 

Very practical procedures for estimating these parameters are given in the documentation and 
use either a graphic method, (Moss, 2005) known as the Allan-Plait paper or the Weibull 
paper, either computer algorithms (Lannoy, Procaccia, 2005).  

8. A software example : REXPERT (Procaccia, 2005;  siadcom1@wanadoo.fr). 

Mathematic estimation of Weibull law parameters is not really easy. A large number of 
complete data is indeed necessary to obtain a relatively precise estimation. When this number 
is too small or the rate of censored observations is high, it is suggested to simulate data or to 
use bayesian techniques, simulated data or expertise compensating the missing information in 
the computation algorithm. 



The Maximum Likelihood (ML) estimates of the Weibull law parameters are obtained by 
solving the following equations with an iterative procedure generally using the Newton-
Raphson or Simpson methods: 
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ti being the observed failure times and tj the censored times. 
This methodology is used in many software tools, in particular in the REXPERT software, 
which collects and modelizes expertises and observed data, and estimates the Weibull law 
parameters,  β and η.  
When the number of collected data is limited, simulation-based methods provide more precise 
estimates of parameters. The most popular simulation methods are the bootstrap sampling and 
the Monte Carlo simulation, both used in REXPERT: 
 - the principle of bootstrap sampling is to simulate the repeated sampling process, 
to use the information from the distribution of appropriate statistics in the bootstrap samples, 
to compute the relevant parameters; it is necessary to generate a large number of simulated 
samples from the original data sample; in the fully parametric bootstrap sampling method, the 
ML estimates determined from the actual data are used to replace the unknown parameters; 
 - the Monte Carlo method consists in generating series of values of random 
variables with specified probability densities;  the results of the simulation are treated as if 
they were experimental data. 
Generally, due to the high quality of design and to a very demanding maintenance 
programme, failure data are limited, and most of the field data are right censored data. In this 
case, Maximum Likelihood estimation can be strongly biased, and Stochastic Expectation 
Maximisation (SEM) is preferred (Bacha et al, 1998). 
A first approximation of the Weibull parameters β i, ηi is performed from observed data or 
from expert assessments. 
Then, the conditional expectation of censored data is simulated with a Weibull distribution 
having (β i, ηi )  parameters, and is maximised using observed data. 
 Each iteration has two steps: 
 .completing the sample of failure data with a simulation of each censored data, 
beyond the censored time; 
 .computation of the parameter estimates (β i+1, ηi+1 ) with the ML method. 
The process is stopped when each parameter becomes stable. 
Finally bayesian probabilistic inference based on combining operating experience data - the 
likelihood function- with expert opinions relative to the representative mathematical model - 
the prior information -,  is also implemented in REXPERT. This approach is well adapted to 
rare events. 
The component reliability over time is modelled with a two-parameter Weibull distribution of 
the reliability of the component which is in a Bayesian context: 
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β,η, being respectively the Weibull random shape and scale parameters, and π(β,η) the 
posterior distribution relative to these unknown parameters, deduced from expert judgement  

(prior information) and field data (likelihood function). 

The input display screen of REXPERT is given figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-  REXPERT input display screen 

The first part of the software (top of the figure) concerns the collection and the modeling of 
expertise and data from the field (feedback experience): reliability parameters from similar 
data bank collection, and computation of failure rate, probability of failure on demand, mean 
repair time, calculation made from non informative or informative expertise and from field  
data. Figure 5 shows input of prior information relatively to expertise or feedback data for 
computation of exponential failure rate. Note that the analyst has the possibility to weight or 
to balance the available information in function of the relative attached confidence (use of the 
relative Fisher information). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5- Input of prior information 



The second part of the software concerns the determination of Weibull law parameters, either 
with a frequential calculation if the number of failure data is important, either with a bayesian 
algorithm when it is not the case and when expertise is available. 

To illustrate the possibilities of the software with the bayesian computation of the Weibull 
parameters,  data recorded from type I tests on four identical horizontal reciprocating 
compressors in a  petrochemical installation (Moss, 2005) have been chosen. Observations 
cease after 8760 hours of operation. They are time-terminated right-censored sample of data. 
The observed data are given in table 3, failure times and censored data  are in hours.  

Table 3. Reciprocating compressors test results (Moss, 2005) 

Compressor Time of 1st failure Time of 2nd failure Time of 3rd failure Censored Time 

A 3600 7408 8058 8760 

B 4200   8760 

C 2408 5426 7076 8760 

D 3003 8408  8760 

 

Figure 6 represents input data display in a bayesian approach: the left part of the display 
screen collects expertises (Lannoy, Procaccia, 2003) on shape parameter (burn in or aging) in 
a gradual estimation (top), the estimated uncertainty of expertise (middle), and at the bottom,  
a min and a max value of the expected mid- life of the compressor ( and not the scale 
parameter). On the right part are recorded the test observations (from table 3). 

 
Figure 6 -  REXPERT aging input data 

The obtained results on scale and shape parameters are given on the figure 7, where the 
computation are realized without weighting between prior and likelihood information. Mean 
value of each Weibull parameter, standard deviation, shape and scale parameters of gamma 
distributions which represent uncertainty of Weibull parameters, are computed for prior 
distribution (the expertise), likelihood (the observed data), and posterior joint distribution 
(given on the figure 7). 



 

 Figure  7 - Posterior computed Weibull parameters  (without weigthing). 

 

If a Fisher weighting is used with the goal to give the same importance to expertise and to 
observed data, the respective posterior results are: 

 - β = 2,16 

 −η = 7440 hours 

Figure 8 represents the graphs of posterior distributions of shape and scale Weibull 
parameters. 

 

 
 

Figure 8 -  Posterior Weibull shape and scale parameter distributions 

Finally the computed reliability in this case is given figure 9. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Computed reliability 

(result exact computation relation (a); approximate with parameters estimates) 

The Weibull law has been and is still widely used in parametric methodologies, but there are 
also others which are less used. 

In particular, we might mention the Cox model ( Cox, 1972), which uses a vector of 
explicative exogenic variables in the failure rate or in a degradation model; these variables 
can, in turn, depend on time. 

Parametric methods provide a simple means of obtaining an estimation of the parameters of a 
law on the basis of a limited number of observed data, and their confidence interval.  
However, one is bound to the choice of the model retained, which may be different from the 
real model studied. 

Non-parametric models like the Kaplan-Meier estimator (1958) of the reliability function, a 
complement of the distribution function for failure times F(t), presupposes no particular shape 
for the failure rate distribution.  They may represent a preliminary step prior to the choice of a 
parametric model, but they require at least 5 observations. 

The main characteristic of probabilistic lifetime models is that the variables are positive: the 
normal law one can use will not be the reference  model. Another characteristic is the 
presence of incomplete data (survival data) which will complicate statistical procedures, since 
the information obtained from feedback is incomplete (Celeux, 2000).  The data are 
considered to be truncated or type I or type II censored depending on whether observation has 
ended due to a limit on the observation time or to a predefinition of the number of failures. 

As concerns modeling of degradations, work in this domain seems very recent.  Nonetheless, 
in the Fifties, reliability experts focused on physical analysis of failures observed in feedback, 
with a view to determining the physical causes, the degradation mechanisms at work, the 
kinetics, etc., and on finding solutions essentially related to design or fabrication.  This aspect 
of reliability seems to be undergoing a revival if we consider the current economic concerns 
of industrialists seeking to extend service life or control aging, and if we look at recent 
research publications (see, for example, Bagdonavicius, Nikulin, 2002). 

To review current knowledge in the field of aging and aging management will therefore need 
to examine two aspects: reliability studies and modeling of degradations. 
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